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Background

Second Iteration: Extra gene info perprompt extracted from NCBI
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Graph ( G)

Here is extra info about the gene: {info}. Given a subset
of the DisGeNET graph G with nodes as geneNames or
diseaseNames and edges connecting gene-disease pairs
(g,d), predict the top-10 diseases associated with

1. Concept Matching for the hallucinations

* Networks are a type of data structure can be
applied to many domains to demonstrate
relationships between entities

 Link Prediction

2. Improved scoring method based on Token
Similarity

{gene_name} by predicting new edges not in G. Only
select diseases that are in G. Output exactly 10 diseases
in a comma-separated list and nothing else. Do not
include any additional text or explanations. Here is G:
{pairs_str}

* Predict new edges

* QOur study: Gene - Disease association network between entities in a graph

3. Prompt Engineering - find the right amount

* (Genes and diseases each as nodes in the graph of context to provide to GPT

. Graph Machine Learnin g Third Iteration: Chain of Thought Prompting Technique

 SOTA Methods =2 GCNs(Graph Convolutional
Networks)

Reasoning Process:
Step 1: Identify the known diseases associated with {gene_name} in the
graph G.
Step 2: Identify other genes in the graph G that are associated with these
diseases
Step 3: Analyze the connectivity pattern of these related genes and diseases
to infer potential new associations for {gene_name}.

* Edge is represented with GDAs (Gene-disease
associations)

4. Fine tune a smaller model for better
performance/ test other LLMs (Llama,

* Indicates a causal relationship where mutations Gemini, etc)

or alterations in a gene are known to cause a * Our focus : Large Language Model Utilization

disease Step 4: Rank the potential new diseases based on their connection strength 5 . Test and C()mpare W]th Graph Neural
o 1 1 - and relevance to {gene_name
Prom_pt _an LLM to PredlCt d_lsease gene er 5: Select the top-10 diseases from this ranking. / N@tWOrk(GNN) based approach
associations given information about the already
existing links in Graph G ‘
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integrated more information specific to the
task AND a reasoning process for the LLM.

opportunity and guiding me throughout my project.



