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Abstract

Background: In Huntington’s disease (HD), an expanded CAG repeat produces characteristic striatal
neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-
specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could
modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic
instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of
sensitive high-throughput instability quantification methods and global approaches to identify the underlying
factors.

Results: Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of
somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-
throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide
bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray
gene expression as a predictor, we built a mathematical model and identified a gene expression signature that
accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability
was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated
neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that
correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue
specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and
neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability.

Conclusion: Our study clearly demonstrates that multiple tissue factors reflect the level of somatic instability in
different tissues. In addition, our quantitative, genome-wide approach is readily applicable to high-throughput
assays and opens the door to widespread applications with the potential to accelerate the discovery of drugs that
alter tissue instability.

Background
Expansions of trinucleotide repeat sequences over cer-
tain thresholds cause more than 30 human diseases
including Huntington’s disease (HD), a number of spi-
nocerebellar ataxias (SCAs), myotonic dystrophy 1
(DM1), and fragile X syndrome. Interestingly, expanded
trinucleotide repeat sequences undergo progressive,
expansion-biased tissue-specific somatic instability [1-6].

As the severity of these disorders is highly dependent on
repeat length, somatic instability in tissues that are the
pathogenic targets is predicted to contribute to disease.
Notably, in HD, striking somatic expansion of the HD
CAG repeat occurs in the striatum and cortex, brain
regions that are major targets of the pathogenic process.
Furthermore, studies both in HD patients and in a
knock-in mouse model of HD provide compelling evi-
dence indicating that somatic expansion in these brain
regions accelerates the ongoing pathogenic process
[7-9]. Therefore, understanding the mechanisms* Correspondence: jlee51@partners.org; wheeler@helix.mgh.harvard.edu
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underlying tissue-specific somatic instability in HD may
provide novel routes to therapies.
Somatic instability is critically dependent on DNA

repair genes and is also influenced by cis-factors
[7,8,10-16]. However, it is unknown what determines its
tissue specificity. It has been proposed that the expres-
sion levels of DNA repair genes and/or the pathogenic
process itself may underlie tissue patterns of instability
[5]. Given that somatic HD CAG instability occurs in
many tissues to varying extents [3,6,17], we reasoned
firstly, that tissue specificity may governed by many fac-
tors, and secondly, that studying a large cross-section of
tissues with different instabilities would provide the
most information concerning the major factors underly-
ing tissue instability patterns. Therefore, in order to gain
insight into the factors that govern the tissue specificity
CAG instability in HD, we have taken quantitative, glo-
bal and unbiased approaches.
Using accurate genetic knock-in mouse models of HD

[6,18] that exhibit similar tissue-specific patterns of
somatic instability to those seen in HD patients [3,6],
we developed a novel instability quantification method
that is sensitive and applicable to high-throughput
assays. We then integrated this methodology with
unbiased and global bioinformatic approaches to identify
a gene expression “signature” and biological pathways
that correlate with tissue instability. Using these meth-
ods we have, a) tested the role played by factors pre-
viously proposed to contribute to the tissue specificity
of somatic instability, and b) uncovered novel pathways
that may be important in determining the tissue specifi-
city of instability in HD.

Results
Instability quantification
Previous methods for determining instability following
PCR amplification of repeats from ‘bulk’ genomic DNA
have either been qualitative, or have failed to adequately
account for amplification efficiencies that differ between
stable and unstable tissues. In contrast, quantitative
small pool-PCR (SP-PCR) methods [19] are extremely
labor-intensive and impractical for high-throughput ana-
lyses. In order to facilitate high-throughput, global ana-
lyses of somatic instability we therefore first developed a
novel method for quantifying CAG repeat sizes from
‘bulk’ genomic DNA. PCR amplification of trinucleotide
repeats generates multiple PCR products, viewed using
GeneMapper software as a cluster of peaks differing by
a single CAG repeat unit (Figure 1). Distinguishing sig-
nal peaks from noise peaks is critical for the accurate
measurement of instability. In typical GeneMapper
traces of PCR-amplified trinucleotide repeats, there is
no clear boundary between signal and noise, making
defining noise peaks (or background signals) extremely

difficult. To solve this problem, we developed a novel
background correction method (namely, relative peak
height threshold), where 20% of the height of the high-
est peak was set as the threshold for each analysis. For
stringent analyses, peaks with heights lower than this
threshold level were excluded from quantification. We
used a conservative threshold factor (20%) in this study
as this detects peaks with good signal intensity (i.e. over
100), and is more resistant to amplification variation
than lower thresholds (i.e. 10%). However, if peak sig-
nals are strong enough, a lower threshold (10%, 5%) will
provide more sensitive quantification.
Figure 1 illustrates the procedure for instability quan-

tification. This is outlined as follows: 1) the highest peak
(arrow) in each analysis was identified; 2) 20% (thresh-
old factor) of the height of the highest peak was set as a
relative peak height threshold (red horizontal line); 3)
for background correction, peaks with heights less than
the threshold were excluded; 4) normalized peak heights
were calculated by dividing the peak height of each peak
by the sum of the heights of all signal peaks; 5) the
change in CAG length of each peak was deduced from
the constitutive CAG length of the mouse determined
by the highest peak in tail analysis (main allele); 6) the
normalized peak heights were multiplied by the changes
from the main allele; 7) these values were summed to
get the instability index. The instability index represents
the mean CAG length change from the main allele per
cell in a given tissue. Theoretically, symmetrical distri-
bution of contraction and expansion will result in an
instability index of zero. However, as instability in
HdhQ111 mice is expansion-biased and contraction is not
highly variable between tissues (see Figure 2), this quan-
tification effectively captures repeat expansion.

Validation of the relative peak height threshold
quantification method
We first determined the reproducibility of our method
by quantifying instability index in 17 tissues from 2-6
different HdhQ111/+ mice at 5 months of age. As shown
in Figure 2, the shift in the highest peak compared to
tail (panel A) and the instability index (panel B) were
highly reproducible between mice for all tissues
tested. Note that the instability indices of stable tissues
(i.e. lung, heart, spleen) were negative because stable tis-
sue GeneMapper traces were biased toward contraction
likely due to the increased amplification efficiency of
shorter CAG alleles. Instability indices of 17 tissues ran-
ged from -1.03 (testis) to 6.37 (striatum).
The relative peak height threshold method can also be

applied to different types of instability quantification
depending on the focus of the biological question.
Thus, after applying the relative peak height threshold,
we can determine contraction and expansion indices
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(Figure 2C), the number of contracted and expanded
peaks (Figure 2D) or the relative composition (%) of
contracted, expanded and unchanged peaks (Figure 2E).
Importantly, these measurements of different aspects of
instability may be useful to capture the complexity of
tissue instability. In all cases, measurements were repro-
ducible for all tissues across multiple mice. To represent
the levels of instability of tissues for further analysis, we
used the instability index (Figure 2B).
Next, to examine the effect of template DNA amount

on instability index, we calculated striatal instability
indices using different amounts of template DNA from
striatum of an HdhQ111/+ mouse at 5 months of age. As
shown in Figure 3A, instability indices calculated using
the relative peak height method generated consistent
instability indices (coefficient of variation, 2.2%) from a
wide range of template DNA amounts (50~300 ng).

We then compared instability indices using our rela-
tive peak height threshold method to somatic instability
quantified using SP-PCR on genomic DNA of tissues
from the same mouse (9 tissues, 5 month, HdhQ111/+).
Figure 3B shows examples of tissues exhibiting high,
medium and low instability indices, and the correspond-
ing CAG repeat length frequency distributions obtained
by SP-PCR. These data indicated that the instability
index broadly captured the bulk of the somatic variation
detected by SP-PCR, but not the rare large expansions.
However, there was a highly significant correlation
between the instability index obtained using the bulk
DNA method and an instability index quantified from
the small pool data (Figure 3C, p value, 0.00015), sug-
gesting that although instability index using bulk DNA
may not be sensitive enough to detect rare molecules, it
can give a good estimate of overall instability.

Figure 1 Instability index determination using a relative peak height threshold. To quantify the levels of instability from GeneMapper
traces peak height was used to determine a relative threshold of 20%. Peaks falling below his threshold were excluded from analysis. Peak
heights normalized to the total of all peak heights were multiplied by the change in CAG length of each peak relative to the highest peak in tail
(main allele). These values were summed to generate an instability index. Striatum analysis is shown as an example (HdhQ111/+, 5 months, 100 ng
genomic DNA). Open, blue, black, and red peaks represent background, contracted alleles, main allele from tail analysis of same mouse, and
expanded alleles, respectively.
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Together, our analyses suggest that the instability
index, determined from GeneMapper traces of bulk
genomic DNA, is a reproducible measurement, relatively
insensitive to input DNA amount and well suited for
high-throughput analyses where SP-PCR may be
impractical.

Genome-wide identification of an instability-correlated
gene expression signature
With the aim of investigating the tissue specificity of
somatic instability in a global and unbiased manner we
then took a bioinformatics approach. Using 16 different
tissues from 5-month HdhQ111/+ mice as our training set
(Figure 2B, excluding tail), with instability index as a
quantitative phenotype, we analyzed mouse tissue gene
expression data (Mouse Gene Expression Atlas
GSE11339, C57BL/6J, 10 weeks) to identify a gene
expression signature that correlated with tissue repeat

instability. HdhQ111 somatic instability (and therefore
instability index) increases over time [6]. We chose 5
months as this represents a time-point at which tissue
differences in instability can be readily resolved. Notably,
the Gene Expression data is derived from mice that dif-
fer in age and genetic background (B6 versus CD1,
absence versus presence of HD CAG knock-in allele) to
the HdhQ111 mice in this study. While age and genetic
background-related gene expression changes will
increase the noise in our system, this broad, tissue-
based analysis allows us to pull out major tissue-specific
gene expression differences that occur over and above
age- and genetic background-related effects.
Thus, we modeled instability index as a function of

gene expression using partial least square regression
(PLSR) [20]. An instability-correlated gene expression
signature was identified by leave-one-out cross valida-
tion (LOO CV) of training samples (16 tissues), and the

Figure 2 Reproducibility of instability quantification methods. Instability indices were determined from 100 ng genomic DNA isolated from
17 tissues of 2-6 HdhQ111/+ mice at 5 months of age. (A) The table shows replicate number of mice for each tissue (n) and numbers of samples
where the highest peak was shifted from the main allele (tail’s highest peak). Zero indicates no major allele shift and +1 indicates one CAG unit
increase. B. Instability index. (C, D, E) The relative peak height correction method was applied to different methods of quantification such as: a
contraction and expansion index (C), the number of contracted/expanded peaks (D) and the relative composition of contracted/unchanged/
expanded peaks (E). Data bars represent mean ± SE. TL, tail; CTX, cortex; ST, striatum; CB, cerebellum; LV, liver; HT, heart; LN, lung; STO, stomach;
SP, spleen, SKN, skin; KD, kidney; OV, ovary; TS, testis; HC, hippocampus; PAN, pancreas; LI, large intestine; and SI, small intestine.
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signature, comprised of the 150 most highly correlated
probes with tissue instability (Additional file 1), reflected
the instability index with a root mean squared error of
prediction of 0.235 (Figure 4, training sample RMSEP).
We then confirmed the predictive power of this instabil-
ity-correlated gene expression signature by comparing
measured instability indices with predicted instability

indices from our regression model in new independent
samples. For this, 1) we measured instability indices of
four new independent HdhQ111/+ tissues (muscle, olfac-
tory bulb, white adipose tissue and adrenal gland) and
compared these with instability indices predicted from
the regression model in the same tissues (Figure 4,
blue), and 2) we predicted instability indices using

Figure 3 Evaluation of instability index. (A) To assess the sensitivity of the instability index to the amount of input DNA we calculated
instability indices using varying amounts of template DNA (HdhQ111/, 5 months, striatum). The coefficient of variation (CV) of the striatal
instability index was 2.2%, calculated by dividing the standard deviation of 4 instability index measurements (50, 100, 200, and 300 ng DNA) by
the mean instability indices of same 4 measurements. (B) GeneMapper traces and instability indices from bulk DNA (100 ng) and frequency
distributions of CAG repeat length obtained using small pool-PCR from striatum, cortex and spleen from an HdhQ111/+ mouse at 5 months of
age. (C) Instability indices from bulk DNA (100 ng) GeneMapper traces were plotted against small pool instability indices (see Methods section)
obtained from 9 tissues (striatum, cortex, cerebellum, liver, lung, stomach, skin, heart, ovary) of an HdhQ111/+ mouse at 5 months of age. The two
values were highly correlated.
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independent microarray data from HdhQ111 striatum and
cerebellum and compared these with measured instabil-
ity indices (Figure 4, red). As shown in Figure 4, the
predicted and measured instability indices matched clo-
sely in all cases (test set RMSEP, 0.5444) with a signifi-
cant correlation (Pearson correlation coefficient, 0.9783;
p value, 9.6 × 10-7), indicating that instability index can
be relatively precisely predicted from the gene expres-
sion signature. Furthermore, these data demonstrate
that although the model was based on gene expression
data and instability index data from mice that differed
in age and genetic background, it nevertheless has sig-
nificant predictive power. This indicates the presence of
tissue-specific factors related to instability independent
of age and genetic background.

Tissue instability prediction
Our sensitive quantification method and instability-cor-
related gene expression signature/regression model is a
versatile tool. One of the advantages of our regression

model is that the ‘propensity’ for instability can be pre-
dicted when instability can not be directly measured.
For example, our approach allowed a prediction of an
instability index in 78 different tissues and conditions in
the mouse tissue gene expression data set (Table 1), a
far greater number than has ever been previously mea-
sured, providing a comprehensive view of tissue instabil-
ity. Interestingly, although most of the tissues (except
striatum and liver) were predicted to be relatively stable,
some degree of CAG repeat instability was predicted for
many tissues in the nervous system.

Pathogenesis and instability
We are interested in understanding the factors that con-
tribute to the tissue specificity of HD CAG somatic
expansion, particularly, why the repeat is so unstable in
the striatum. Our instability quantification/bioinfor-
matics approach provides a novel, global and unbiased
means of probing these factors. One possibility that
could at least in part explain the tissue specificity is that

Figure 4 Instability-correlated gene expression signature and regression modeling. To identify an instability-correlated gene expression
signature, instability index was modeled as a function of gene expression using the mouse Gene Expression Atlas. We calculated the correlation
between instability index and expression level, and built regression models by sequentially introducing top n number of the most highly
correlated probes with instability index (16 training tissues, 2 gene expression replicates) using partial least square regression (PLSR). The lowest
error rate (root mean squared error of prediction, RMSEP) in leave one out cross validation (0.235) was obtained by modeling of the 150 most
correlated probes. The predictive power of the model was verified by two independent test sets. Firstly, we determined instability indices of 4
additional tissues, muscle, olfactory bulb, white adipose tissue and adrenal gland (HdhQ111/+, 5 months, n = 4-6 mice), and compared them with
instability indices predicted by the regression model (blue, 2 gene expression replicates). Secondly, we predicted instability indices using
independent striatum and cerebellum microarray data (GSE9025, HdhQ111/+, 5 months, n = 1), and compared them to measured instability
indices (red). RMSEP, root mean squared error of prediction.
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somatic instability occurs as a result of the ongoing HD
pathogenic process, as previously hypothesized [21]. We
first used our ability to predict instability from gene
expression to test this hypothesis. The instability-corre-
lated gene expression signature reflects a cell or tissue
state that is associated with instability. If instability
occurred as a result of ongoing pathogenesis, one would
expect an altered level of instability-correlated gene
expression signature in cells expressing mutant

huntingtin compared to wild-type cells. Therefore, we
performed gene expression profiling on striata and cere-
bella of 10-week HdhQ111/111 mice that exhibit an
ongoing pathogenic process and somatic instability in
striatum but not in cerebellum [18], and on wild-type
Hdh+/+ littermates, and predicted instability using the
regression model above. Interestingly, as shown in
Figure 5A, predicted instability indices were greater in
striatum than in cerebellum, but did not distinguish

Table 1 Tissue instability index predicted by a PLSR model.

Tissue Instability index Tissue Instability index

dorsal striatum 6.37 cornea 0.29

liver 5.63 common myeloid progenitor 0.29

kidney 1.17 follicular B-cells 0.27

Adrenal gland 1.13 skeletal muscle 0.27

amygdala 1.10 dendritic plasmacytoid B220+ 0.26

hypothalamus 1.08 granulo mono progenitor 0.24

retina 0.99 macrophage peri LPS thio 0 hrs 0.22

cerebral cortex 0.98 ciliary bodies 0.17

cerebellum 0.96 mast cells 0.16

mega erythrocyte progenitor 0.96 osteoblast day5 0.14

lens 0.95 bone marrow 0.12

NK cells 0.89 pituitary 0.10

dendritic cells lymphoid CD8a+ 0.88 pancreas 0.09

macrophage bone marrow 6 hr LPS 0.85 B-cells marginal zone 0.08

T-cells foxP3+ 0.85 hippocampus 0.07

stomach 0.82 lacrimal gland 0.06

dorsal root ganglia 0.75 lymph nodes 0.04

macrophage bone marrow 24 h LPS 0.74 spinal cord 0.03

macrophage bone marrow 2 hr LPS 0.72 mammary gland lact 0.01

macrophage peri LPS thio 1 hrs 0.71 osteoblast day 14 -0.15

cerebral cortex prefrontal 0.69 salivary gland -0.20

T-cells CD4+ 0.63 uterus -0.24

macrophage peri LPS thio 7 hrs 0.59 mammary gland non-lactating -0.25

mast cells IgE 0.57 spleen -0.26

thymocyte DP CD4+CD8+ 0.57 intestine small -0.29

iris 0.57 bone -0.29

T-cells CD8+ 0.49 eyecup -0.30

osteoclasts 0.48 adipose white -0.39

macrophage bone marrow 0 hr 0.47 granulocytes mac1+gr1+ -0.39

thymocyte SP CD8+ 0.46 osteoblast day 21 -0.39

mast cells IgE+antigen 1 hr 0.43 ovary -0.47

adipose brown 0.43 bladder -0.54

dendritic cells myeloid CD8a- 0.41 epidermis -0.61

mast cells IgE+antigen 6 hr 0.39 intestine large -0.67

retinal pigment epithelium 0.34 placenta -0.73

thymocyte SP CD4+ 0.33 lung -0.82

prostate 0.30 heart -1.01

microglia 0.30 testis -1.03

olfactory bulb 0.30 umbilical cord -1.18

The PLSR model built with the instability-correlated gene expression signature from 16 training tissues was used to predict instability index for each of the
tissues analyzed in the GNF mouse Gene Expression Atlas. Data represents mean of 2 replicates.
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mutant from wild-type striatum. This finding suggested
that mutant and wild-type striata have an equal propen-
sity for somatic expansion that is unrelated to the HD
CAG pathogenic process. Although wild-type striata
possesses this propensity, the normal HD CAG repeat
does not actually expand because it does not present a
sufficiently long target to be susceptible to the processes
that mediate expansion.
To test the prediction that somatic instability does not

occur as a consequence of ongoing pathogenesis, we
performed two genetic experiments. Since the expanded
Hdh CAG repeat is both a source of a pathogenic pro-
cess and a target of instability, it is very difficult to
delineate the relationship between the HD pathogenic
process and somatic instability. Therefore, we used
genetic mouse models in which neurodegenerative pro-
cesses are modulated or caused by factors independent
of the HD CAG repeat. We first investigated HdhQ92

mice lacking the dopamine transporter (DAT), which
show accelerated HD pathogenesis in the striatum [22].
As shown in Figure 5B, striatal instability indices of
HdhQ92/+ DAT-/- and HdhQ92/+DAT+/+ mice were not
different, indicating that HD CAG instability is not con-
tributed by the disease process. We also tested whether

inducing neurodegeneration in the cerebellum, a nor-
mally stable tissue, would cause instability in the cere-
bellum by crossing HdhQ111 mice to Harlequin (Hq)
mice, a model of cerebellar granule cell degeneration
[23]. As shown in Figure 5C, HdhQ111/+ Hq/Y mice and
HdhQ111/+ +/Y control mice exhibited similar low cere-
bellar instability indices, indicating that neurodegenera-
tion per se is insufficient to induce instability.
Taken together, these results support the prediction

from our mathematical model, that the HD CAG disease
process is not responsible for the striatal specificity of HD
CAG repeat instability, arguing against the sequestration
of DNA repair proteins or other factors, as a contributor
to somatic instability as previously suggested [21]. Our
results are also in agreement with similar levels of instabil-
ity seen in knock-in and fragment transgenic models of
HD that exhibit different rates of inclusion formation [24],
and with the observation that striatal instability occurs in
SCA1 and DM1, although the striatum is not the target of
pathogenesis in these disorders [2,5].

DNA repair and repeat instability
DNA repair genes, particularly in the mismatch repair
pathway, are required for somatic expansion of

Figure 5 HD pathogenesis and somatic instability. (A) We profiled gene expression in striatum and cerebellum in HdhQ111/111 and control
(Hdh+/+) mice at 10 weeks of age (GSE19780). Expression values of the 150 instability-correlated probes were used to predict instability indices
based on our regression model. Data bars represent mean ± SD (n = 3-5 mice per genotype). (B) Dopamine transporter (DAT) knockout mice
were crossed with HdhQ92 mice to test if accelerated HD pathogenesis increases instability (8-10 months, n = 3-4 mice per genotype). Instability
indices were measured in striatum and cerebellum. Cerebellum was included as a control tissue that does not show accelerated HD pathology.
(C) Hq/+ mice were crossed with HdhQ111 mice to test if pathology in cerebellar granule cells can induce somatic instability (4 months, n = 3
mice per genotype). Instability indices were measured in striatum and cerebellum. Striatum was included as a control tissue that does not show
Hq-mediated neurodegeneration. In addition, the Hq mutation did not increase HD CAG instability in cerebellum at either 5 weeks (n = 3-4 per
mice genotype) proceeding overt neurodegeneration, or at 7 months (n = 3-4 mice per genotype) when the mice exhibit significant
neurodegeneration (data not shown).
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trinucleotide repeats [7,8,11-16] and have previously
been suggested as trans-acting tissue-specific factors
responsible for tissue-specific somatic instability [5].
One possibility, therefore, is that DNA repair gene
expression levels are correlated with the levels of
instability in tissues. Our instability-associated gene
expression signature gave us the opportunity to examine
if expression levels of DNA repair genes play a role in
determining the tissue specificity of instability. Thus, if
DNA repair gene expression levels were major determi-
nants of the tissue specificity of somatic instability the
expression levels of these genes would be predicted to
correlate with instability levels across tissues. Initial
examination of the 150 probes comprising our instabil-
ity-correlated gene expression signature did not high-
light an important role for genes involved in DNA
repair in general (Additional file 1). To probe these pro-
cesses further, we examined whether expression levels of
specific DNA repair genes (Msh2, Msh3, Ogg1 and Cbp),
previously shown to play important roles in CAG repeat
instability [8,13,14,21,24-26], correlated with instability
index measured in 16 tissues. The expression levels of
Msh3, Ogg1 and Cbp did not correlate with instability
index and Msh2 expression level showed a weak nega-
tive correlation with instability index (Figure 6A, Addi-
tional file 2). In agreement with these findings, and
further validating the predictive power of our signature,
protein levels of Msh2 (Figure 6B) and Cbp (data not
shown) did not correlate with instability index.
Selective neuronal expression of Msh3 was recently pro-
posed to contribute to the greater levels of instability in
neurons compared to glia [24], and therefore we
explored this further. Analyses of gene expression data
revealed nearly identical Msh3 expression levels in puri-
fied neurons and glia (Figure 6C). Together with the
lack of correlation between instability index and Msh3
expression levels across 16 tissues (Figure 6A, Addi-
tional file 2), the data argue against a major role for
Msh3 expression levels in determining tissue- or cell
type-specific instability.
Therefore, our results suggest that although certain

DNA repair genes are absolutely critical for somatic
instability [7,8,11-16], their expression levels are unlikely
to be the primary determinants of tissue specificity.
Clearly, posttranscriptional and/or posttranslational reg-
ulation of DNA repair genes could still play a tissue-spe-
cific role. It would therefore be of further interest to
determine whether there is a correlation between DNA
repair enzyme activities and tissue instability.

Genome-wide survey for pathways that correlate with
tissue instability
Our findings indicate that neither HD pathogenesis, nor
DNA repair gene expression levels is a major

determinant of the tissue specificity of somatic instabil-
ity. We therefore sought to gain insight into the nature
of the factors that might influence the tissue specific
property of somatic instability. Although, as a group, the
genes comprising our signature are highly predictive of
instability, on an individual gene basis, they do not have
sufficient power to predict instability-related biological
pathways. Therefore, as an alternative strategy, we car-
ried out a sensitive, unbiased and global gene set enrich-
ment analysis (GSEA), in which gene expression data is
analyzed at a the level of biological pathways rather
than individual genes [27]. Confirming the findings
above, DNA metabolism pathways were not significantly
correlated with instability index (Additional file 3). In
contrast, pathways broadly in the cell cycle category
were negatively correlated, whereas pathways related to
neurotransmitter activity (e.g. adrenoceptor, monoa-
mine, and serotonin) and cellular metabolism (e.g. gly-
colipid) were positively correlated with tissue instability
index (Table 2). Confirming previous predictions, the
negative correlation of cell cycle pathways with instabil-
ity index is consistent with the instability seen in many
tissues of the nervous system (Table 1), its occurrence
in postmitotic neurons [24,28] and a dissociation of
instability and cell division rate [29]. Our results also
suggest novel roles for additional pathways (e.g. neuro-
transmitter and cellular metabolism pathways) in deter-
mining the tissue specificity of somatic instability.
It is possible that as striatum is particularly unstable, the
highly correlated pathways are simply those that are pre-
dominantly present or absent in this tissue, and that the
correlation with instability is coincidental. However,
pathways significantly up-regulated or down-regulated
in striatum compared to cerebellum (data not shown)
showed little overlap with those that correlated with
instability; for example, the dopamine pathway is
strongly up-regulated in striatum, but does not correlate
with instability. This suggests that the instability-corre-
lated pathways are directly related to instability rather
than simply being striatal-specific.

Test of prediction from GSEA
Instability-correlated pathways may either directly mod-
ify instability or may represent cells’ secondary
responses to instability. To distinguish these alternatives,
we asked whether alteration of an instability-correlated
pathway would influence instability. Cell cycle pathways
were negatively correlated with instability index
(Table 2), and our instability prediction in tissues
(Table 1) indicated intermediate levels of instability in
many areas of the nervous system. This suggested that
instability might be associated with the lack of mitotic
activity in these tissues due to their high proportion of
non-proliferating cells. Therefore, we tested directly

Lee et al. BMC Systems Biology 2010, 4:29
http://www.biomedcentral.com/1752-0509/4/29

Page 9 of 16



whether cell cycle block would result in increased
instability. To test this hypothesis, we took advantage of
a clonal striatal cell line (STHdhQ111/+) derived from
striatal primordia of HdhQ111/+ E14 embryos [30]. These
cells divide at 33°C due to immortalization by the tem-
perature sensitive SV40 large T antigen, but stop

proliferating at 39°C due to the degradation of SV40
large T. We therefore compared the instability index of
cells in cycling (33°C) and non-cycling (39°C) conditions
over 9 weeks. As shown in Figure 7, the instability index
increased over time only when the cells stopped cycling
(+0.09 instability index units/week, linear regression

Figure 6 Candidate DNA repair genes and somatic instability. (A) Gene expression levels (Msh2, Msh3, Cbp, Ogg1) and measured instability
indices of 16 training tissues were plotted. Among multiple probes representing the same gene, the probe with the highest expression level in
striatum was selected. Expression levels showed insignificant correlations for Msh3, Cbp and Ogg1 and a negative correlation for Msh2 with
measured instability indices. (B) Protein levels of Msh2 were measured in 2 unstable (striatum and liver) and 2 stable tissues (cerebellum and
spleen) from HdhQ111/+ and corresponding control mice (n = 3 mice per genotype, 2 months). Whole cell protein extracts (70 μg) were resolved
by SDS-PAGE (6%) and western blots were performed for Msh2 (Santa Cruz Biotechnology) and Tubulin (Cell Signaling). ST, striatum; CB,
cerebellum; LV, liver; SP, spleen. (C) Microarray expression levels of Msh3 (Affymetrix probe ID, 1430643_at and 1446511_at) in FACS-purified
astrocytes and neurons were obtained from the GSE9566 data set. Msh3 expression level in astrocytes was not significantly different from that in
neurons. Data bar represents mean of log2 expression levels ± SD (n = 8-10).
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model: Instability index ~Weeks, p value, 0.0015), but not
when cells continuously proliferated (+5 × 10-5 instability
index units/week), consistent with the prediction from
the negative correlation between cell cycle and the
instability index. It is notable that the HD CAG repeat in
STHdhQ111 cells is extremely stable over multiple pas-
sages and under numerous different experimental condi-
tions (data not shown). Cell cycle arrest is the only
condition we have identified so far that has resulted in
any expansion of the repeat. These findings indicate that
the negative correlation of cell cycle pathways with the
instability index more likely reflects a contribution of cell
proliferation to preventing instability rather than a reduc-
tion of these pathways as a consequence of instability.

Contribution of multiple processes to somatic instability
Although cell cycle pathways may be directly involved in
modifying instability, some tissues (e.g. cerebellum) with
a high proportion of non-proliferating cells were

relatively stable. This indicated that each correlated
pathway may explain a small part of the tissue instability
and that the contributions of each pathway may be dif-
ferent for each tissue. Therefore, to investigate further
the contributions of the different instability-correlated
pathways, we compared the expression levels across dif-
ferent tissues of genes in the two most strongly corre-
lated pathways (positive correlation). Interestingly,
although ‘UDP-galactose beta-N-acetylglucosamine beta-
1,3-galactosyltransferase activity’ was the most signifi-
cantly correlated pathway (Table 2), liver which had a
high instability index (5.6) showed a low level of gene
expression in this pathway (Figure 8A). In addition,
similar levels of gene expression in the ‘adrenoceptor
activity’ pathway, the second most significantly corre-
lated pathway (Table 2), occurred in hippocampus, cere-
bral cortex and striatum, with low (0.07), intermediate
(0.98) and high (6.37) instability indices, respectively
(Figure 8B). These results indicate that no single

Table 2 Pathways significantly correlated with the instability index.

Name Size NES P value

Negative correlation

G1 to S cell cycle reactome 150 -1.87 0.0000

Nuclear membrane 208 -1.72 0.0023

Negative regulation of progression through cell cycle 183 -1.64 0.0024

Mitosis 261 -1.82 0.0044

M phase of mitotic cell cycle 262 -1.81 0.0044

Protein kinase inhibitor activity 41 -1.71 0.0046

G1 pathway 68 -1.85 0.0046

Cell cycle pathway 57 -1.85 0.0066

Mitotic cell cycle 427 -1.76 0.0069

Kinase inhibitor activity 42 -1.72 0.0070

Protein amino acid-ribosylation 30 -1.92 0.0071

Eicosanoid synthesis 29 -1.79 0.0072

P53 pathway 43 -1.77 0.0085

Notch pathway 17 -1.70 0.0086

Cell cycle 176 -1.82 0.0087

Integrin mediated cell adhesion 222 -1.73 0.0089

RNA helicase activity 41 -1.78 0.0097

Positive correlation

UDP-galactose beta-N-acetylglucosamine beta-1,3-galactosyltransferase activity 21 1.84 0.0000

Adrenoceptor activity 25 1.94 0.0017

Amine receptor activity 47 1.88 0.0018

Beta-1,3-galactosyltransferase activity 25 1.94 0.0020

Mono amine GPCRS 45 1.88 0.0038

Glutamate metabolism 51 1.78 0.0042

Neuromuscular junction development 15 1.76 0.0057

Serotonin receptor activity 22 1.81 0.0057

Oxidoreductase activity, acting on the CH-CH groups of donors, oxygen as acceptor 15 1.72 0.0064

Gene set enrichment analysis was performed using Pearson correlation between expression level and instability index as a ranking metric. Significant gene sets
were identified by permutation-based nominal p value (p < 0.01). NES, normalized enrichment score.
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Figure 7 The effect of cell proliferation on instability index. (A) STHdhQ111/+ cells were maintained at the restrictive temperature (39°C) (no
cell division) for 9 weeks without subculture (red), and control cultures at the permissive temperature (33°C) (actively dividing) were subcultured
every week (blue). GeneMapper traces of genomic DNA isolated at 9 weeks are shown. (B) For the time-course study, cultures grown at 39°C
and at 33°C were harvested at 0, 3, 5, 7 and 9 weeks, and genomic DNA was analyzed to calculate the instability index. Representative
GeneMapper traces and instability indices are shown from three independent experiments.

Figure 8 Different combinations of many processes may be responsible for the different levels of somatic instability. To investigate the
levels of contributions from significant pathways in each tissue, we identified highly correlative probes (absolute Pearson coefficients > 0.6) in
the two most significantly positively correlated gene sets, and plotted relative expression levels against measured instability indices in the 16
training set tissues. (A) ‘UDP-galactose beta-N-acetylglucosamine beta-1,3-galactosyltransferase activity’ gene set was the most significant
pathway in the gene set analysis (positive correlation). This gene set is composed of 21 probes, and 7 probes were highly correlative (correlation
coefficient > 0.6). The expression levels of these 7 probes in liver were low compared to those in striatum although instability indices are similar
in these tissues. (B) ‘Adrenoceptor activity’ gene set was the second most significant pathway (positive correlation), and has 25 probes as
members, of which 7 were highly correlative (correlation coefficient > 0.6). Interestingly, cortex or hippocampus showed similar expression levels
of the highly correlative probes in this gene set to those in striatum, although instability indices in cortex or hippocampus were significantly
lower than that of striatum. Graphs show 7 highly correlated probes for each gene set, and IDs are Affymetrix MG430 2.0 probe set IDs.
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pathway can fully explain tissue-specific instability,
strongly implying that somatic instability requires multi-
ple processes that may be different in different tissues.

Discussion
We have developed a novel approach for use in investi-
gations of tissue-specific somatic HD CAG repeat
instability that combines a reliable, high-throughput
method for quantifying somatic instability with mathe-
matical modeling based on gene expression data. Predic-
tions based on our modeling were confirmed using
genetic, biochemical and cell culture-based experiments,
indicating the validity of our bioinformatics approach.
It has been proposed that somatic instability may be a

consequence of disease pathogenesis [21], potentially
explaining the striatal specificity of somatic expansion in
HD. Our results directly demonstrate that HD pathogen-
esis does not explain the tissue specificity of HD CAG
instability. In addition, DNA repair proteins have been
found to be essential factors for somatic instability of tri-
nucleotide repeats [7,8,11-16]. However, here we demon-
strate that differences in expression levels of DNA repair
genes do not underlie the tissue-specific differences in
HD CAG instability. In addition, Hdh expression levels
did not correlate with instability index in tissues (data
not shown), confirming observations that although tran-
scription through expanded repeats may be important in
somatic instability [31], tissue-specific patterns are not
reflected in the steady state levels of Hdh mRNA. Alter-
natively, our study suggests new pathways, notably meta-
bolism, neurotransmitter, and cell cycle that may
contribute, in combination, to the level of somatic
instability in different tissues, providing a starting point
to identify additional factors that contribute to somatic
instability. Notably, there was no predominant factor that
could explain the tissue-specificity of HD CAG instabil-
ity, suggesting that patterns of instability are determined
by the combined effects/interactions of many genes.
Somatic instability of trinucleotide repeats not only

requires trans-acting factors, but has also been shown to
depend on cis-acting sequences [10]. Thus, while certain
tissues are more predisposed to somatic expansion, the
expandability of a particular repeat in a particular tissue
is further modified by its context. This could at least in
part explain differences in the precise tissue patterns of
somatic expansion in different diseases [2,29]. It would
therefore be of interest to determine instability-corre-
lated gene expression signatures and instability-corre-
lated biological pathways for other trinucleotide repeat
diseases. Instability-correlated genes/pathways that are
shared between diseases would provide further insight
into fundamental aspects of tissue-specific instability.
Our bioinformatics method based on gene expression

data can only address aspects of tissue instability that

are related to steady-state mRNA levels. In principle,
however, a similar bioinformatic approach could be also
applied to proteomics data. Irrespective of the particular
method however, the strength of our approach is in its
high-throughput, global and predictive nature, facilitat-
ing a number of important applications. Our GeneMap-
per quantification method is readily applicable to high-
throughput assays such as screening small molecules
that modulate instability in cells, or screening for
genetic modifiers in mice. A powerful application of our
bioinformatics approach is that the instability-correlated
gene expression signature can be used as a surrogate
marker for instability in situations where repeat instabil-
ity cannot be directly measured. For example, gene
expression databases can be screened to identify cell or
tissue states that have the propensity for somatic
instability, even in the absence of an expanded CAG
repeat target as a read-out. Similarly, databases can be
screened for compounds that reduce the instability pro-
pensity. Together, these approaches promise to acceler-
ate the discovery of drugs that modulate instability and
that are therefore candidate modifiers of disease.

Conclusions
Our study demonstrates that multiple tissue factors
including metabolism, neurotransmitter, and cell cycle
combine to reflect the level of somatic instability in dif-
ferent tissues. Our findings also indicate that DNA
repair proteins act largely in a non tissue-specific man-
ner. In addition, the combination of our instability
quantification method and mathematical modeling is a
powerful strategy that has allowed us, in an unbiased
manner, to gain critical new insights into the tissue spe-
cificity of trinucleotide repeat instability in HD. It opens
the door to widespread downstream applications with
the potential to make significant advances in novel ave-
nues for therapeutic intervention in both Huntington’s
disease and trinucleotide expansion disorders in general.

Methods
Mice
HdhQ111 knock-in mice with 109 CAGs [18] were used
for quantification of tissue instability and for microarray
gene expression analyses (Affymetrix MG 430 2.0). Mice
were genotyped as previously described [7]. For acceler-
ated pathology models in cerebellum or striatum,
HdhQ111/+ (CD1) and HdhQ92/+ mice (CD1) [6] were
crossed with Harlequin (Hq) mutant (B6CBACa-AW-J/A)
[23] and dopamine transporter (DAT) knockout mice
(C57Bl/6J) [22], respectively. HdhQ92 mice were crossed
with DAT knock-out mice and progeny intercrossed to
generate HdhQ92/Q92 DAT-/- mice and HdhQ92 DAT+/+

control littermates for comparisons of instability.
HdhQ111 males were crossed with Hq/+ females, and
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HdhQ111/+ Hq/Y males and control HdhQ111/+ +/Y litter-
mate males used for comparisons of instability. All ani-
mal experiments were performed to minimize pain and
discomfort, under an approved Institutional Animal
Care and Use Committee protocol.

CAG length determination and instability quantification
Genomic DNA, isolated from mouse tissues and cell
lines (DNeasy, Qiagen), was used for PCR amplification
using HD CAG repeat-specific primers as previously
described [7]. The forward primer was fluorescently
labeled with 6-FAM (Perkin Elmer) and PCR products
were resolved using the ABI 3730 DNA analyzer
(Applied Biosystems) using GeneMapper v.3.7 and Gen-
eScan 500-LIZ as internal size standard to assign repeat
size. GeneMapper traces were used to determine an
instability index as described (Figure 1).

Small pool-PCR
Genomic DNA was digested with EcoRV and diluted in
10 mM Tris-HCl, pH 8.0, 1 mM EDTA containing 0.1
μM carrier primer (MD16) to a final concentration of
approximately 10 ng/μl. The amount of input DNA
equivalent to a single amplifiable mutant Hdh allele was
determined empirically using Poisson analysis, and for
each tissue between 32 and 117 single mutant
amplifiable molecules were analyzed. A nested PCR
protocol was used, in which only the mutant (knock-in)
Hdh allele is amplified. Mutant Hdh alleles were amp-
lified using 0.5 μM MD16 primer 5’-CCCATT-
CATTGCCTTGCTGCTAAG (forward) [4] and 0.5 μM
LKH5 primer 5’-TGGGTTGCTGGGTCACTCTGTC
(reverse) [3] in 1× Thermo Scientific Custom PCR mix
(containing 45 mM Tris-HCl pH 8.8, 11 mM ammo-
nium sulfate, 4.5 mM MgCl2, 6.7 mM 2-mercaptoetha-
nol, 4.4 μM EDTA, 1 mM dNTPs and 113 μg/ml BSA),
10% DMSO and 0.5 U units Taq polymerase (Fisher).
Cycling conditions were 94°C 5 min, 35 cycles of 94°C
30 sec, 58°C 30 sec, 72°C 3 min, followed by 10 minutes
at 72°C. PCR products were diluted 100-fold in TE and
amplified in a second round using 0.8 μM Hu4 primer
5’-CCTGGAAAAGCTGATGAAGG (forward) and 0.8
μM Hu3 primer 5’-GGCGGCTGAGGAAGCTGAGGA
(reverse) in a PCR buffer containing 67 mM Tris-HCl
pH 8.8, 16.7 mM (NH4)2SO4, 2 mM MgCl2, 0.17
mg/mg BSA, 10 mM 2-mercaptoethanol, 10% DMSO,
200 μM dNTPs, with 0.5 U Taq polymerase (Fisher).
Cycling conditions were 94°C 90 sec, 25 cycles of 94°C
30 sec, 65°C 30 sec, 72°C 90 sec, followed by 10 minutes
at 72°. Hu4 was fluorescently labelled with 6-FAM
(Applied Biosystems). PCR products were resolved using
the ABI 3730 automated DNA analyzer (Applied Biosys-
tems) using GeneMapper v.3.7 and GeneScan 500-LIZ
as internal size standard to assign repeat size. HD CAG

size was assigned as the highest peak. All PCR reactions
were set up in a laminar flow hood and 20% of zero
DNA control PCR reactions were included per run. To
determine a small pool instability index we determined
the frequency of each CAG repeat length, and multi-
plied each frequency by the number of repeats (+ or -)
from the modal CAG length. These values were then
summed.

Analysis of GNF mouse Gene Expression Atlas and
regression modeling
We used the mouse tissue gene expression database of
Genomics Institute of the Novartis Research Foundation
(mouse Gene Expression Atlas, GSE11339). All microar-
rays were background corrected and normalized by
gcRMA. To identify an instability-correlated gene
expression signature, Pearson correlation coefficients
and corresponding p values between gene expression
levels and instability indices of training samples (16 tis-
sues, 2 gene expression replicates) were calculated for
each probe, and the gene expression data was sorted by
p values. We used Pearson correlation coefficients only
as a ranking metric and this linear correlation informa-
tion has not been used in actual modeling. Therefore,
our models capture not just linear relationship but cov-
ariance between instability and expression. To identify
an instability-correlated gene expression signature, we
sequentially introduced the top n most highly correlated
probes into the regression algorithms in a forward selec-
tion procedure, and calculated root mean squared error
of prediction (RMSEP) by leave one out cross validation
(LOO CV) of training samples (R, 2.4.1 and ‘pls’ pack-
age, 2.5.0). In addition to LOO CV of training samples,
we further tested our model using 2 different test set
samples. Firstly, we measured instability indices in addi-
tional tissues (muscle, olfactory bulb, white adipose tis-
sue and adrenal gland (HdhQ111/+, 5 months, n = 4-6
mice for each tissue) and compared them with instabil-
ity indices predicted by our model. Secondly, we addi-
tionally analyzed gene expression profiles of striatum
and cerebellum (HdhQ111/+, 5 months, n = 1) and used
these to predict instability indices for comparison to
previously measured instability indices in these tissues.
Test set RMSEP was calculated based on the difference
between measured and predicted instability indices. Pre-
diction of instability index for each of the tissues ana-
lyzed in mouse Gene Expression Atlas was based on our
regression model and the instability-correlated signature.

Gene set enrichment analysis
Using all probes, gene set enrichment analysis [27] was
performed to sensitively identify significantly correlated
pathways with instability index. Measured instability
indices of training samples (16 tissues, Figure 2A) were
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used as continuous phenotype labels, and Pearson corre-
lation was selected for a ranking metric. Our gene set
database included pathways annotated by Gene Ontol-
ogy, KEGG, GenMAPP, and the Molecular Signature
Database from the Broad Institute. Significant gene sets
were identified by permutation-based nominal p value
(p < 0.01).

Additional file 1: An instability-correlated gene expression
signature. List of 150 probes comprising instability-correlated gene
expression signature.

Additional file 2: Correlations of DNA metabolism genes with
instability index. Genes potentially involved in DNA metabolism such as
DNA synthesis and DNA repair were identified by the Gene Ontology
biological process.

Additional file 3: Gene set enrichment analysis results of DNA
metabolism pathways. Gene set analysis of DNA metabolism pathways
indicated that DNA metabolism gene sets were not significantly (p <
0.01) correlated with the instability index.

Abbreviations
HD: Huntington’s disease; HD: HD gene; SCAs: spinocerebellar ataxias; DM1:
myotonic dystrophy type 1; PLSR: partial least square regression; LOO CV:
leave-one-out cross validation.
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