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Abstract 
Long-term renal allograft rejection is the most common outcome in kidney 
transplantation. Continuing the crusade to extend allograft function after the first year 
post-transplantation, we attempted to associate genetic factors that might contribute to 
long-term allograft outcomes by sequencing the exomes of patients diagnosed with 
chronic allograft nephropathy/interstitial fibrosis and tubular atrophy. A variety of 
association analyses were employed, but these analyses failed to identify statistically 
significant associations. The study was underpowered to detect the association of rare 
genomic variants with small effect sizes. However, it confirmed previous reports of the 
absence of large effects from common variants. We have made both the study data and 
analysis workflow available for public use, and we hope that these resources will help to 
power future meta-analyses that may detect smaller effects. 
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1 Introduction 
Renal transplantation is the best treatment option for most patients with end-stage renal 
disease. In 2017, nearly 20,000 kidney transplants were performed, representing over 
half of all organ transplant procedures (OPTN data as of September 5, 2018). 
Advancements in post-transplantation immunosuppressive therapies have greatly 
improved short-term allograft survival rates, with 1-year graft survival rates of over 90% 
for both living and deceased donors1. Now, as acute rejection and early graft loss have 
become less common, the current focus is on the prevention and treatment of longer-
term complications and improving long-term graft outcomes.  
 
The most common cause of graft loss after the first year post-transplant is chronic allograft 
nephropathy (CAN). CAN is defined as a general and still poorly understood clinical entity, 
characterized by progressive deterioration of organ function in the transplanted kidney2. 
CAN has been given various nomenclatures based on the clinical or histological definition 
of the underlying disease/pathology3–6, but for the sake of simplicity and consistency we 
will refer to the entity as CAN.  While there has been an increased interest in CAN 
research, a clear mechanistic explanation for the clinical entity has not emerged. Rather, 
studies have indicated that CAN represents a spectrum of immune and nonimmune 
processes between the host and allograft, causing injury to the kidney in a progressive 
manner7.  
 
Due to the inherent ambiguity in the definition of CAN, the clinical entity has been 
redefined in histological terms as interstitial fibrosis and tubular atrophy (IFTA) of 
unknown etiology8. Biopsy studies place the incidence of IFTA around 50% for transplants 
after 1 year, 70% after 2 years, and near 100% after 10 years9. These studies also reveal 
that IFTA severity correlates with allograft dysfunction and progresses over time. 
However, the progression of IFTA does not seem to proceed in a linear manner, 
supporting the idea that the processes driving IFTA are dynamic and exposing the need 
for further research into the mechanisms responsible for CAN/IFTA progression. 
 
Many factors are known to influence long-term renal allograft function, and genetic factors 
have been especially suspected due to the success of kidney transplantation between 
identical twins10,11. However, to date, the only genetic variants that have been shown to 
be significantly associated with renal allograft dysfunction lie in the HLA region12. Despite 
decades of research, the role of the HLA region in transplant outcomes is still under 
debate. Though the effort taken to find compatible transplants over the last 25 years are 
commendable, the return on those efforts has been modest at most. The sheer numbers 
of HLA antigens and molecular subtypes, as well as their combinations and uneven 
distributions among racial and ethnic populations, makes matching difficult. This is 
particularly relevant for transplant centers, which must make efforts to be more inclusive 
of lower priority or extended criteria kidneys rather than discarding them. Continuing the 
search for genetic variants that contribute to extended kidney transplant outcomes, we 
sought to identify genetic variants that are associated with the specific CAN/IFTA 
phenotype through a case/control association study. For genetic variant identification, we 
employed whole-exome sequencing due to its balance between genome coverage and 
affordability13.  
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2 Materials and Methods 
 
2.1 Study participant samples 
260 peripheral blood samples were collected from patients who either displayed the 
extreme CAN/IFTA phenotype (> Banff grade I according to the Banff  ’05 histological 
criteria) or had healthy transplants after 3 years8. Three cohorts of patients were selected, 
each of which contained near equal proportions of the two phenotypes. The first cohort 
consisted of 100 patients of varied self-reported ethnicity, the second consisted of 60 
patients who self-identified as “Caucasian/European” (referred hereafter to as “white”), 
and the third consisted of 100 patients who self-identified as “African-American” (“black”).  
In total, 30 samples were removed from the analysis due to errors in sample metadata 
and/or issues with sequencing quality. Of the remaining 230 samples, 118 were CAN and 
112 were excellent transplants (TX). All patient samples and clinical data were collected 
with approved Institutional Review Board (IRB) consents as part of the U19AI063603-01.  
 
2.2 Sequencing and variant calling 
Genomic DNA was extracted from whole blood using QIAGEN Puregene Blood Kits 
(Valencia, CA) according to the manufacturer’s protocol. Whole exome sequencing 
library preparation was performed using the KAPA® Hyper Prep Kit (Pleasanton, CA). 
Exome capture was performed using the Nimblegen SeqCap EZ Human Exome Library 
v3.0 Kit (Madison, WI) according to the manufacturer’s protocols. Sequencing was 
performed on an Illumina HiSeq 2000 sequencer with a paired-end read length of 100 
bp in the Genomics Core Facility at UCSF. 
 
The sequencing reads from each sample were aligned to the hg19 human reference 
genome using the BWA-MEM algorithm from the Burrows-Wheeler Aligner (BWA) 
software package, version 0.7.1014. To prepare the alignment files for variant calling, read 
groups were assigned and duplicate reads were marked using the Picard Tools software 
from the Broad Institute (http://broadinstitute.github.io/picard/). Single-nucleotide variants 
and small insertions/deletions (indels) were identified using the Genome Analysis Toolkit 
(GATK) version 3.3 software, according to the Broad Institute’s best-practices workflow15. 
The Mills and 1000Genomes gold standard indels, the 1000Genomes Phase I indel calls, 
and the dbSNP build 137 data sets were used as known sites for indel realignment and 
base quality score recalibration. Joint variant calling was performed using the GATK 
HaplotypeCaller in GVCF mode, followed by joint genotyping to produce a group variant 
calling format (gVCF) file for each analysis cohort. 
 
2.3 Quality control 
In order to minimize labeling errors, the sex of each sample was determined using the 
Plink 1.9 software package16, and these sequence-based sex labels were compared to 
the original sex annotations. Sequence-based sexes were determined by computing a 
heterozygosity F-statistic estimate for variant calls on the X chromosome for each sample 
and visualizing the F-statistic distributions within each cohort to identify males and 
females. All sequencing cohorts displayed distinct and separate distributions for the male 
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and female F-statistics. Samples with calculated sexes that differed from their original 
labels were then removed from the analysis—7 samples were removed from the first 
cohort, 8 samples were removed from the second cohort, and 3 samples were removed 
from the third sequencing cohort. 
 
2.4 Association analyses 
The Plink 1.9 software was used to run a Fisher’s Exact Test with Lancaster’s mid-p 
adjustment for each variant16. Quantile-quantile and Manhattan plots were created with 
the “qqman” R package17. An adaptive Monte Carlo permutation was also performed for 
each variant site, producing high-confidence permuted p-values.  
 
Associations at the gene level were tested using a sequence kernel association test for 
the combined effect of rare and common variants (SKAT_CommonRare) for each 
analysis cohort18. SNP sets with gene annotations for each GATK-called variant were 
created using the hg19 gene range list provided by Plink. 
  
Biological pathway-based associations were tested using the GSEA software package 
with gene sets from MSigDB19. Ranked lists of genes were created based on the p-values 
obtained from the SKAT tests. The pre-ranked GSEA algorithm with an unweighted 
scoring scheme was run against the hallmark, curated, GO, and immunologic signatures 
MSigDB gene sets for each analysis cohort. 
 
Meta-analysis across the three sequencing batches was performed with the METAL 
software package20. The p-values and log odds ratios from Plink were used as input to 
the meta-analysis. The standard error analysis scheme was used, which weights effect 
size estimates using the inverse of the corresponding standard errors. Genomic control 
correction was also applied.  
 
False discovery rates were estimated using simulated association analyses, which were 
run with randomly assigned case and control groups containing the same numbers of 
samples as the original data. Significant associations from these simulations should 
represent false positives. 
 
2.5 Power analysis 
Fisher’s exact test power calculations were made using the “statmod” R package. Power 
was calculated for seven control allele frequency values and eight sample sizes with a 
range of case allele frequency values from 0 to 1. 
 
 

3 Results 
3.1 Clinical characteristics 
The clinical characteristics of the 118 CAN and 112 TX patients are shown in Table 1. 
The only significant variables between the patient groups were a higher percentage of 
Hispanic donors (p=0.008), higher rate of Type 1 diabetes in the CAN groups and an 
expectedly higher creatinine in CAN patients p=0.05. 
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3.2 Sequencing and variant calling 
In total, high quality exomes from 230 patients were sequenced in three batches (Figure 
1).  Patients with excellent transplant outcomes and patients who displayed extreme 
CAN/IFTA were roughly equally represented (112 and 118, respectively). Self-reported 
“white” and “black” individuals accounted for the majority of patients (86 and 103, 
respectively), while individuals of self-reported ancestry other than “white” and “black” 
made up the remaining 41 samples. 
 
On average, around 50 million (99%) read pairs from each sample were mapped to the 
hg19 human reference genome, and roughly 40 million (80%) of these read pairs were 
mapped to the whole-exome capture kit regions. The average depth of coverage across 
the targeted capture regions for all samples was greater than 80x, which gave sufficient 
power to detect single-nucleotide variants with the GATK Haplotype Caller. 
 
The GATK Haplotype Caller identified over a million variants across all samples. 
Compared to the reference genome, ~470 thousand single-nucleotide and small 
insertion/deletion variants were identified in the first sequencing cohort, ~450 thousand 
variants were identified in the second sequencing cohort, and ~880 thousand variants 
were identified in the third sequencing cohort. 
 
3.3 Association analyses 
The analysis workflow for testing the association of variants with the CAN/IFTA phenotype 
is provided in figure 1. Association was first investigated at the single-variant level using 
the Plink 1.9-implemented Fisher’s exact tests with Lancaster’s mid-p adjustment and 
Monte Carlo permutations. Quantile-quantile and Manhattan plots were generated for 
each single-variant association analysis to visualize the distribution of obtained p-values. 
The full array of visualized results is provided in the supporting information. 
  
No single variant was associated with the CAN/IFTA phenotype at a genome-wide 
significance level of 5x10-7. Furthermore, while they can be more sensitive than 
Bonferroni-corrected significance levels, simulation-based estimates of false discovery 
rates failed to uncover significant associations for any single variant. Tables of the top p-
values from random shuffling of case and control groups are provided in the supporting 
information. 
  
Given both the complex etiology of CAN/IFTA rejection and the lack of significantly 
associated single-nucleotide variants, we hypothesized that association tests at the gene 
and/or pathway level might be better able to detect a signal from aggregated single-
nucleotide variants than from individual variants. However, sequence kernel association 
tests (SKAT) using all identified single-nucleotide variants failed to detect significant 
associations that either stood out from the other results or replicated across analysis 
cohorts. Likewise, pathway-level association tests based on gene set enrichment analysis 
(GSEA) of the SKAT-ranked gene associations did not produce significant results. The 
tables of ranked genes and pathways from these analyses are provided in the supporting 
information. 
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The final association analysis that we performed was a meta-analysis across the three 
sequencing batches. The top three variants that are positively associated with CAN/IFTA 
are displayed in a Manhattan plot in figure 2. This analysis also failed to pass either 
genome-wide significance or false-discovery tests (supporting information). However, to 
aid future studies, we have made the results from each of our association tests publicly 
available.  
 
To give some insight into our top associations, we have listed the details of the top three 
variants that are positively associated with CAN/IFTA in figure 3. The most significantly 
associated variant from the meta-analysis was rs7300549, with a p-value of 3.99e-05 and 
log odds ratio of 0.4423. This SNP is located in the LIMA1 (LIM domain and actin binding 
1) gene, also known as EPLIN (epithelial protein lost in neoplasm). 
 
The second most significantly associated variant was rs8102349, an intron variant in the 
EMP3 (epithelial membrane protein) gene. EMP3 is thought to be involved in cell 
proliferation and cell-cell interactions and to function as a tumor suppressor21,22. 
The third most significantly associated variant was rs2368392. This SNP lies in the SVIL 
(supervillin) gene, which is a link between the actin cytoskeleton and the plasma 
membrane and plays a role in cell motility23.  
 
 

4 Discussion 
With a sample size of less than 250 patients, these association analyses were sufficiently 
powered to detect associations for common variants with a relatively large effect on the 
CAN/IFTA phenotype (supporting information). No significant associations were detected 
in our analyses, but we cannot rule out small effects from common variants or even 
substantial effects from relatively rare variants. On the other hand, small effects and rare 
variants are expected to be of little clinical utility, meaning that a low likelihood of common 
variants of large effect size is a useful observation, and perhaps, clinicians should not be 
too concerned with underlying genetic variation when treating kidney transplant 
recipients. 
 
A lack of significant genetic associations with long-term renal allograft failure has been 
observed in previous studies. A recent study from Hernandez et al. looked at an order of 
magnitude more samples but failed to find associations outside of the HLA region24. The 
possibility that rare variants contribute to the prolonged function of kidney transplants 
cannot be ruled out at this time. Future studies will need much larger sample sizes to 
have a chance at teasing out these effects. 
 
Despite only identifying a few associations that neared genome-wide significance, we 
would like to discuss the top three genes from our results in the context of the association 
of these genes with CAN, based on available literature. LIMA1 is an actin-associated 
molecule that plays a role in the development and progression of various cancers25. 
Podocytes, which are terminally differentiated cells of the glomerulus, have actin-based 
membrane extensions called foot processes. Kidney function has been associated with 
genetic mutations in proteins implicated in maintaining podocyte integrity, such as 
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inverted formin-2 (INF2) nephrin (NPHS1), CD2-associated protein (CD2AP), α-actinin 4 
(ACTN4)26–29. Interestingly, another LIM domain-containing protein with a role in actin 
polymerization, LIMK2, was shown to be associated with nephropathy in a genome-wide 
association study of African American diabetic kidney disease30.  
 
EMP3 is a downstream effector of TWIST1/2 and induces epithelial-to-mesenchymal 
transition (EMT) in gastric cancer31. Therefore, it is tempting to speculate a major role for 
this gene in the EMT mechanism which has been widely implicated as a key mechanism 
by which injured renal tubular cells transition to mesenchymal cells leading to the 
development of fibrosis, a hallmark of CAN.  
 
Like the other genes mentioned above, supervillin is also associated with the EMT 
process.  A recent study showed that EMT due to hypoxia in hepatocellular carcinoma 
induces an up regulation of SVIL, which promoted cancer cell migration and invasion. 
This increase was a significant and independent predictor of cancer metastasis. 
 
While our study failed to detect genetic associations, we hope that our data will be put to 
use in future large-scale studies and meta-analyses. The use of direct whole-exome 
sequencing provides a more complete set of genomic variants than commonly used 
microarray technology, which should allow our data to be easily incorporated into future 
data sets and reduce the reliance on imputation. In addition to our raw sequencing data, 
we have also made our full sets of both analysis code and results available for future use 
to ensure that our work can be efficiently integrated into larger studies. 
 
Our sequencing data and variant calls are available at dbGaP (submission in process). 
The analysis results, including the results of each association test, are available on 
Zenodo (https://zenodo.org/record/1453460). The code to reproduce these results is on 
github at https://github.com/SuLab/kidneyMetaAS and can be reused and hacked for any 
purposes. 
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Figure legends 
 
Table 1. Patient demographics 
 

  CAN (118) TX (112) n* Significance  
Recipient Sex (Female %) 39.8% 44.6% 230 NS  
Recipient Age (Years + SD) 45.1 + 15.7  48.9 + 13.5 226 NS  
Recipient Ethnicity (AA %) 45.7% 43.7% 228 NS  
Recipient Ethnicity (Hispanic 
%) 15.3% 11.6% 228 NS  
Deceased Donor % 55.20% 59.80% 195 NS  
Donor Sex (Female %) 48.70% 42.40% 211 NS  
Donor Age (Years + SD) 39.7+13.9 37.2+14.1 212 NS  
Donor Ethnicity (AA %) 33.3% 31.5% 193 NS  
Donor Ethnicity (Hispanic %) 16.2% 4.3% 193 0.008  
CNI based 
Immunosuppression 90.2% 91.9% 214 NS  
% Induction therapies 61.9% 57.1% 209 NS  
Diabetes - Type I 5.2% 0.0% 213 0.03  
Diabetes - Type II 23.5% 25.5% 213 NS  
Creatinine 2.7+1.2 2.0+2.3 125 0.05  

      

* - Number of available patients with data for the given clinical variable  
NS - Not Significant; SD- Standard Deviation, AA- African American; CNI - Calcineurin Inhibitor 
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Figure 1. Analysis workflow and utilized software. After sample collection, sequencing, 
and variant calling, multiple association tests were performed. For the tests of 
association for individual variants, fisher’s exact tests were performed with Plink for 
each of the three sequencing cohorts. A meta-analysis with METAL was then performed 
across these three batches of sequencing. For the association tests for groups of 
variants, SKAT was used to rank genes by cumulative variant impact. This ranked list of 
genes was then used for a gene set enrichment analysis with GSEA. 
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Figure 2. Manhattan plot of meta-analysis results. The p-values of all variants are 
plotted for the whole exome. The top three variants from the meta-analysis that showed 
positive association with CAN/IFTA for all three sequencing cohorts are highlighted. 
 

 
 
Figure 3. Forest plot of the three positively-associated variants with the lowest p-values. 
The variant rsID, gene, p-value, and 1000 genomes minor allele frequency (MAF) are 
above each plot. The case and control (ctrl) minor allele frequencies for the three 
sequencing cohorts, along with the odds ratio from the fisher’s exact test within each 
cohort are in the table. The odds ratio with upper and lower 95% confidence intervals 
are plotted for each sequencing cohort and the summary statistics for the association 
test are in the bottom row of each plot. 
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