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A B S T R A C T

Background and Objective: The importance of early diagnosis of Alzheimer’s Disease (AD) is by no means
negligible because no cure has been recognized for it rather than some therapies only lowering the pace of
progression. The research gap reveals information on the lack of an automatic non-invasive approach toward the
diagnosis of AD, in particular with the help of Virtual Reality (VR) and Artificial Intelligence. Another
perspective highlights that current VR studies fail to incorporate a comprehensive range of cognitive tests and
consider design notes for elderlies, leading to unreliable results.
Methods: This paper tried to design a VR environment suitable for older adults in which three cognitive as-
sessments namely: ADAS-Cog, Montreal Cognitive Assessment (MoCA), and Mini Mental State Exam (MMSE), are
implemented. Moreover, a 3DCNN-ML model was trained based on the corresponding cognitive tests and
Magnetic Resonance Imaging (MRI) with different modalities using the Alzheimer’s Disease Neuroimaging
Initiative 2 (ADNI2) dataset and incorporated into the application to predict if the patient suffers from AD.
Results: The model has undergone three experiments with different modalities (Cognitive Scores (CS), MRI im-
ages, and CS-MRI). As for the CS-MRI experiment, the trained model achieved 97%, 95%, 95%, 96%, and 94% in
terms of precision, recall, F1-score, AUC, and accuracy respectively. The considered design notes were also
assessed using a new proposed questionnaire based on existing ones in terms of user experience, user interface,
mechanics, in-env assistance, and VR induced symptoms and effects. The designed VR system provided an
acceptable level of user experience, with participants reporting an enjoyable and immersive experience. While
there were areas for improvement, including graphics and sound quality, as well as comfort issues with pro-
longed HMD use, the user interface and mechanics of the system were generally well-received.
Conclusions: The reported results state that our method’s comprehensive analysis of 3D brain volumes and
incorporation of cognitive scores enabled earlier detection of AD progression, potentially allowing for timely
interventions and improved patient outcomes. The proposed integrated system provided us with promising in-
sights for improvements in the diagnosis of AD using technologies.

1. Introduction

Cognition is the process through which a person uses the knowledge
they have previously gathered to guide their behavior. As the brain ages,
cognitive abilities often deteriorate progressively, eventually losing
their independence and resulting in dementia. The term "dementia" can
be considered an umbrella term to refer to a variety of symptoms,
including a deterioration in memory, thinking, language, or perceptual
interpretation. Alzheimer’s Disease (AD), the most prevalent type of

dementia, is brought on by a combination of some of the mentioned
symptoms. The World Health Organization predicts that AD and asso-
ciated dementias will be the cause of 1.37 percent of all deaths globally
in 2030. When AD is identified, the neuronal damage has already
advanced to the point where it cannot be repaired. In fact, damage
cannot be repaired when neurons die since they do not proliferate and
replenish themselves as other cells do. Simply put, no treatment has
been found to cure dementia up to now [1]. Therefore, early diagnosis of
Alzheimer’s is of paramount importance. That is the reason behind the
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fact that screening tests are being increasingly used by doctors to assess
patients’ conditions.
In comparison to earlier decades, the global population is aging at a

faster pace. Although older people who use Virtual Reality (VR) tech-
nology are now in the minority, they could benefit from this technology
in different ways [2] including daily activities [3]. Moreover, the aging
population’s health can be maintained through the use of VR as
assessment, treatment, or other applications. At present, many neurol-
ogists and medical professionals are dedicating significant time to
researching methods for early diagnosis of AD and encouraging results
have been frequently achieved. A common approach toward that is the
employment of Artificial Intelligence (AI) which has shown noticeable
advantages including the possibility of having multi-criteria decision--
making. Therefore, there is a significant contribution in exploring the
employment of VR and other new technologies such as AI in AD
diagnosis.
The present study aims to diagnose AD by employing cognitive tests

in a VR setting and predicting the results using an AI model. Specifically,
a wide range of design considerations is taken into account so that the
designed virtual environment became suitable for older adults. Then,
the cognitive tests namely: ADAS-Cog, Montreal Cognitive Assessment
(MoCA), and Mini Mental State Exam (MMSE) are implemented inside
the environment in which the patient can take the test with the help of
an examiner in a multiplayer mode. Regarding the AI section, we pre-
sented a framework that integrates the capabilities of 3D Convolutional
Neural Networks (3D CNN), feed-forward neural networks, and tradi-
tional Machine Learning (ML) classifiers, with the aim of outperforming
existing methods for AD progression detection in the medical domain.
The framework utilizes multimodal data, which consists of a 3D Mag-
netic Resonance Imagin (MRI) volume and cognitive scores, to predict
the medical condition of a patient at 48 months (M48) after the initial
assessment. The 3D CNN is designed as a lightweight feature extractor
that captures intra-slice features of the MRI volume by analyzing the
most critical brain regions and producing a latent representation of the
current brain status. Additionally, we evaluated the impact of fusing
other critical modalities, such as clinical score biomarkers, with the
extracted deep features, and combinedly used them to evaluate five
classifiers, including Random Forest (RF), Decision Tree (DT), Logistic
Regression (LR), Support Vector Machine (SVM), and Deep Neural
Network (DNN). It was concluded that each model improves the disease
identification process when it sees multiple modalities of the same pa-
tient. The key contributions of this paper are as follows:

• The designed virtual environment was performed by considering an
array of design notes in order to make the environment appropriate
for older adults. The evaluation of the design environment indicated
promising positive effects in the related area.

• We converted three important cognitive tests namely: ADAS-Cog,
MoCA, and MMSE into a virtual setting.

• We proposed a novel and lightweight AD progression detection
framework that addresses the limitations of the existing studies in the
AD domain. The given framework predicts the advancement of AD at
month 48, which refers to patients’ health status after three years.

• This time frame is deemed appropriate for the patient’s care pro-
viders and family members to attend to their required health
preparations.

• To delve deeper into the impact of multimodal data in identifying the
progression of AD, we combined the patients’ cognitive scores with
MRI and used it in the disease identification process. The fusion of
modalities was then used to evaluate and improve the selection of
classifiers namely RF, DT, LR, SVM, and DNN.

• We conducted various experiments to evaluate the proposed frame-
work in different environments, such as AD progression detection
using (1) MRI modality, (2) CSs biomarkers, and (3) combination of
MRI + CSs. Results suggest that 3D CNN followed by DNN out-
performed all other comparative models when tested with combined

modalities. The performance reported were (precision:97%,
recall:95%, F1-score:95%, AUC: 96%, and accuracy:94%).

The rest of the paper is as follows: the literature review is covered in
Section II, and Section III provides information on the methodology. The
results and discussion are provided in Sections IV and V respectively.
Finally, Section VI provides us with the conclusion of the paper.

2. Literature review

One way to categorize AD detection approaches is to consider them
as two classes namely invasive and non-invasive. With invasive ap-
proaches, information must be gathered from the patient’s internal or-
gans via procedures such as lumbar punctures or blood draws. While
some of these tests are excruciatingly uncomfortable, they are not
necessarily safe or comfortable for the patient. On the other hand, the
second class includes methods that are harmless and more convenient
for the patient. The involvement of new technologies provides oppor-
tunities to enhance the current non-invasive cognitive assessments. That
is to say, over the past decade, the paper-based tests have been polished
and currently, the new technologies make it possible not only to have
more enhanced non-invasive tests but also to propose new ones. Addi-
tionally, it is stated that diagnosing AD is costly and it is recommended
to incorporate e-health concepts in order to obtain a cost-efficient
approach toward AD diagnosis [4].
Cognitive tests, which fall into the non-invasive category, are highly

accurate at detecting Alzheimer’s. In fact, programs targeting cognitive
aspects include a variety of exercises that stimulate and/or test cognitive
flexibility, executive processes, and spatial memory [5]. Having said
that, paper-based tests used in diagnosing AD have been found to lack
ecological validity, which means that a person’s performance on the
exam does not accurately reflect how they operate in everyday life [6].
On the other hand, the potentialities of Virtual Reality (VR) in improving
ecological validity and offering a more accurate evaluation of a patient’s
cognitive performance in a real-world situation have been proved [7].
That is to say, the patient’s mind can be manipulated in terms of being
misled and tricked as a result of being fully immersed in a virtual
environment. Through the use of realistic stimuli, VR creates virtual
worlds that simulate the feelings associated with cognitive and physical
processes. These qualities play a key role in the portrayal of real-world
circumstances depending on the amount of immersion and engagement.
A novel cognitive test using VR is proposed in [8] with the purpose of

early AD diagnosis. In the proposed solution, considerations such as
targeting at least one of the cognitive domains and benefiting from
virtual environments in terms of flexibility have been taken into ac-
count. The findings of the paper proved the efficiency enhancement of
the current approaches when VR was employed. However, the paper
lacks research in designing the environment appropriate to the targeted
age group, and the proposed test requires more modifications to be more
adaptive to patients.
Tan et al. [9] investigated the performance of VR in cognitive

assessment among 35–74-year-old adults classified into four age groups.
The evaluation was based on the score of the Montreal Cognitive
Assessment (MoCA) and completion time spent performing several daily
activities such as shopping. The six cognitive domains namely:
perceptual-motor, executive function, complex attention, learning and
memory, social cognition and language [10] were targeted in the paper.
The findings highlighted noticeable differences between the perfor-
mance of members in age groups, however, further enhancements were
needed to define performance indices for each age group.
Apart from the ecological validity mentioned earlier, VR holds other

benefits such as being self-administered, requiring little training, offer-
ing joy, and lessening the psychological anguish brought on by utilizing
standard assessment methods [11]. Another benefit resulting from vir-
tual settings would be the availability of more data compared to tradi-
tional assessment methods. Bourrelier et al. [12] highlighted this
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capability by retrieving data such as body movement trajectory,
completion time, and speed. The findings of the paper proved that
VR-based daily activity assessments outperform traditional ones.
Moreover, VR can help explore the role of emotion in MCI rehabilitation
systems as a VR-based approach was examined in [13] and it was proved
that emotion can be complementary to current treatment systems.
Moving forward with further literature review in terms of AI, in order

to clinically diagnose AD at an early stage, a variety of imaging bio-
markers are widely investigated such as MRI, Positron Emission To-
mography (PET), Functional Magnetic Resonance Imaging (fMRI),
Single Photon Emission Computed Tomography (SPECT), and Magnetic
Resonance Spectral Imaging (MRSI) [14]. MRI is a highly effective
method for brain imaging which does not require invasiveness. It offers a
more precise depiction of the brain’s size and structure in comparison to
Computed Tomography (CT), SPECT and PET. It provides a distinct
advantage in terms of marking soft tissues, capturing precise spatial
resolution or even identifying very minor abnormalities in the brain
tissues. Furthermore, the diagnostic abilities of MRI modality has
experienced a significant improvement thanks to the systematic and
accurate labeling of MR images. This labeling process is a crucial factor
in determining AD and healthy controls [15].
AD is a severe decline in cognitive abilities that is typically diagnosed

by specialists using multiple forms of evaluation. Many studies focused
on AD diagnosis use only a single modality of medical data, such as PET,
MRI, or CS. For example, Bron et al. [16] proposed a computer-aided
diagnostic system where they compared a wide array of traditional ML
classifiers for the diagnosis of AD patients. This study was conducted
based on 29 ML classifiers trained on an MRI modality collected at a
single visit of a patient. The highest accuracy achieved was 63% for
classifying three categories: CN vs MCI vs AD. In another study con-
ducted by Jiang et al. [17], a lightweight deep CNNmodel was proposed
to classify AD patients. The published architecture comprised an
eight-layer deep network incorporating batch normalization and
dropout layers to tackle the issue of overfitting. Their proposed frame-
work was trained for binary classification tasks by implementing an MRI
modality of CN and AD patients. Zhang et al. [18] proposed a 3D CNN
model to separate cognitively normal from diseased patients using
whole brain MRI volume. They first extracted all axial slices from the
MRI volume and then processed them through a 3D CNN model in
volumetric format to analyze a large amount of data simultaneously,
thus predicting the patient’s health status. They reported an increase in
disease diagnostic accuracy when a raw MRI is processed through a
standard preprocessing pipeline before applying ML algorithms. The
preprocessing steps include inhomogeneity correction, extraction of
brain tissues, and calculation of the wavelet entropy of the MRI. Their
proposed 3D CNN was composed of a single layered network that was
optimized using particle swarm optimizer resulting in an accuracy of
93%.
The diagnosis of AD commonly employs the use of a single modality,

such as MRI, PET, or CS. However, recent research has shown that
combining multiple modalities, or "multimodal data" can improve the
overall accuracy of ML models used in medical diagnosis [19-21]. While
MRI is a crucial modality for AD detection, combining it with other
forms of data can provide a more comprehensive understanding of a
patient’s condition and potentially enhance the accuracy of models’
prediction. Other modalities such as a patient’s medical history, cogni-
tive scores, and neuropsychological features have also been found
crucial biomarkers in disease identification. By combining multiple
sources of data, it is possible to reduce noise and attain more reliable and
accurate results, which are more likely to be accepted by the medical
community. Overall, multimodal studies offer a more complete picture
of the disease due to the effect of AD on multiple biological processes
[22]. Examples of studies that have fused multiple modalities include
MRI, cerebrospinal fluid (CSF) tests, PET, and genetic features.
Furthermore, utilizing multiple forms of data in medical research has
been shown to provide more comprehensive and precise results. This

approach also tends to be more widely accepted by the medical com-
munity. For example, in a study conducted by Zhang et al. [18], a neural
network was proposed that combined data from MRI, CSF, and fluo-
rodeoxyglucose FDG-PET to distinguish between healthy individuals,
cognitively impaired, and AD patients. Other studies, such as those by
Xu et al. [23] and Huang et al. [24], also employed a multimodal
approach, using various forms of imaging and laboratory data to classify
individuals with cognitive impairment. Gray et al. [25] integrated data
from FDG-PET, MRI, CSF, and genetic analysis in a random forest model
for the diagnosis of AD.
Table 1 provides a summary of the literature review in terms of

employed methods and technologies. A general perspective reveals in-
formation on a lack of study using the combination of VR and AI.
Moreover, most VR studies did not cover different cognitive tests which
contributed to less reliable results obtained from their proposed solu-
tions. The conducted literature review indicates no similar study to the
present paper in terms of considering multiple cognitive tests, design
notes for older people, and the integration of VR and AI.

3. Methodology

According to the goal of the paper, which is to diagnose AD in the
Metaverse, the general framework can be explained in three main sec-
tions: VR, AI, and Evaluation.

3.1. The design of the environment

Despite the improvements made in VR, this technology still poses a
wide range of challenges for older adults, cybersickness and discomforts
being examples [2]. Generally, age-related characteristics such as the
unfamiliarity with VR, vision and hearing influence designing the
interface and can result in other challenges [32,33]. Older adults
frequently face obstacles as a result of their restricted social, economical,
physical, and cognitive resources, and they have to make more effort
compared to younger people to grasp new technology [34]. In this re-
gard, it is stated that researchers must correctly recognize older adults as
a complex group rather than a homogeneous population [35]. There-
fore, several design considerations were taken into account regarding
the design of the environment suitable for older adults. These consid-
erations can be categorized into seven groups: visuals, audio, onboard-
ing and assistance, safety, minimizing side effects, usability, and
realism. As for visual aspects, it is recommended to have familiar ma-
terials in the environment [36] while keeping the number of objects to a
low number [37], see Fig. 1.
Moreover, simple, vibrant, and contrasting colors are highlighted to

have positive effects on the suitability of the scene for elderlies [38].
Fig. 2 indicates the designed environment by focusing on visual-related
considerations such as using simple and contrasting colors for familiar
objects. Regarding audio, spatial [39] and ambient [40] sound is
considered to be beneficial in virtual environments for elderlies. This

Table 1
The comparison of the related papers and this paper.

Paper Cog
domain

VR AI Detection method Approach

[8] EF ✓ ⨯ Turning Test –
[9] All ✓ ⨯ MoCA Daily activity
[26] EF – PM ✓ ⨯ Free-Recall Daily activity
[27] All ✓ ⨯ ACE-R Navigation
[28] PM ✓ ⨯ ALTODIA-iADL Obj Placement-finding
[29] – ⨯ ✓ MRI RESU-Net
[30] – ⨯ ✓ MRI FDN-ADNet
[31] All ⨯ ✓ Hippocampus features

and CS
RNN

Ours All ✓ ✓ MRI and CS(ADAS-
Cog, MMSE, MoCA)

3DCNN-ML and VR
Version of ADNI2
Manual
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feature will, simply put, make older adults feel more familiar with their
surroundings. Thus, a fireplace, as shown in Fig. 3, was incorporated
into the scene to act as background ambient sound, and all sounds were
turned into the spatial mode in order to provide the participants with
some orientation information.
In order to target safety and onboarding and assistance, the re-

searcher’s presence is recommended [38,41]. For this purpose, the
multiplayer option was added to the environment so that both the pa-
tient and the researcher could be present at the same time. As for other
considerations in onboarding and assistance, introduction to the
equipment is stated useful for designing a VR environment for older
adults [39] which was met at the beginning of the experiment.
Furthermore, the introduction session involved explanations of how to

use hands and controllers for interacting with the objects [39]. As for the
next consideration group, which is minimizing side effects, three notes
were taken into account: minimizing stress [42], continuous commu-
nication [43], and clear instructions [44]. With the help of multiplayer
mode in the environment, the patient and the doctor can communicate
using voice. This, in turn, supports not only continuous communication
during the experiment but also clear instructions since the doctor can
clarify the required tasks to the patient to an extent that is allowed ac-
cording to the experiment manual. Furthermore, an appropriate user
interface that offers simplicity and high readability using larger fonts
[37] was designed to facilitate the interaction of older adults with the
features implemented in the environment. In addition, minimizing the
use of controllers was considered to increase the usability aspect of the
design [35]. In this regard, all features were implemented in a way that
can be triggered using controllers and bare hands. The engine will
automatically switch to hand tracking if no movement in controllers is
detected. As for the locomotion system of the application, three types of
navigation were implemented: teleportation through hands and
continuous movement and snap turn through controllers. Lastly, avatars
were selected to be the representative of the users in the environment.
The human-like avatars enhance the realism aspect of the design which
is necessary for our target audience [39].

3.2. The conversion of cognitive tests to VR

During the literature review, several cognitive tests were examined
in terms of their suitability to be implemented in a VR setting, and it
resulted in the selection of Alzheimer’s Disease Neuroimaging Initiative
2 (ADNI2) as the reference manual. This manual covers different char-
acteristics of the entire spectrum of AD to be monitored and examined.
The cognitive assessment section of the manual includes a thorough list
of cognitive tests categorized into different stages such as baseline,
month-6 visit, and annual visit. By studying the procedure of taking
cognitive tests in each stage, three main cognitive tests were chosen to
be implemented inside the VR environment: ADAS-Cog, Montreal
Cognitive Assessment (MoCA), and Mini Mental State Exam (MMSE).
The reasons behind choosing these three tests were the fact that they
were almost repetitive in all ADNI2 stages, and they covered the entire
cognitive domain.
Among five clinical stages in ADNI2, ADAS-Cog, MMSE, and MoCA

were employed in four stages which is a testimony to the importance of
these cognitive tests. ADAS-Cog was implemented partially, while the
other two cognitive tests were incorporated completely into the envi-
ronment. Constructional praxis, naming task, orientation, word recog-
nition, and number cancellation in the ADAS-Cog were implemented
according to the manual. Regarding the ideational praxis stage, since it
includes tasks such as folding a paper and putting it into an envelope, the
authors decided to manipulate this stage of the test and replace it with
other commands. That was donemainly because the folding of a paper in
a virtual setting might not be as realistic as it is in the real world, so in
order to avoid this negative point, modification was conducted. The
other two cognitive tests were implemented completely according to the
manual. The MMSE has 10 stages namely: orientation, immediate recall,
attention, delayed recall, language naming, command, repetition,
reading, writing, and construction. The MoCA covers a total of 11 stages
namely: alternating trail making, visuconstructional skills (cube), visu-
constructional skills (clock), naming, memory, attention, sentence
repetition, verbal fluency, abstraction, delayed recall, and orientation.
The high number of stages supports covering different cognitive do-
mains so that the final screening output will be more reliable.

3.3. The training of the AI model

3.3.1. Material and methods
The technique described in this section aims to monitor the pro-

gressive patterns of AD through a combination of MRI and CSs. The

Fig. 1. Familiar objects and low number of objects in the designed
environment.

Fig. 2. Using simple and contrasting colors in designing the environment.

Fig. 3. The fireplace offers ambient sound for the background.
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framework, displayed in Fig. 5, incorporates necessary preprocessing
steps for each MRI scan which entails eliminating artifacts and con-
verting the data into a standard format. The refined MRI scans are then
processed through a 3D CNN followed by classical ML algorithms to
diagnose the current state of AD. A 3D CNN is capable of extracting high-
level, representational features including both spatial and temporal as-
pects from multiple MRI slices, while the ML classifiers use the extracted
features set to detect the health status of a patient by delivering binary
outcomes. These outcomes signify whether the individual will experi-
ence AD or will stay cognitively normal.

3.3.2. Dataset
The dataset used in this article was acquired from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database [45]. The ADNI was
established in 2003 under the direction of the principal investigator
Michael W. Weiner. The purpose of ADNI is to examine if a combination
of MRI, PET, biological markers, clinical assessments, and neuropsy-
chological evaluations can be utilized to track the advancement of MCI
and AD patients. Furthermore, detecting significant biomarkers in the
early stages of AD would aid medical professionals and researchers in
creating new therapies, evaluating their effectiveness, and minimizing
the cost clinical of trials.
This study was conducted using 564 MRI images along with cogni-

tive scores. No private information or patient identities were disclosed
during this study, as the data were anonymized/de-identified and pro-
vided by the ADNI, ensuring compliance with data protection and pri-
vacy regulations. The obtained MRIs were 3T T1-weighted anatomical
sequences captured using volumetric 3D MPRAGE protocol with a voxel
resolution size of 1 × 1 × 1 mm. We extracted multiple coronal slices
from the preprocessed MRI volume, since coronal planes have shown
better representative features of the crucial brain regions [46] (i.e.,
hippocampus and subfields of the amygdala) that are highly vulnerable
to neurodegenerative disease. We collected 110 slices from the coronal
plane by determining the upper and lower slices corresponding to the
middle slice of the MRI volume. Through this way, the most important
information is taken from the 3D scan.
The criteria we followed to determine the eligibility of a subject for

participation in this study were as follows:

- The AD progression of a patient must be diagnosed within 2.5 years
by a physician. This ensured the enrollment of participants with early
and active disease progression.
- The CN subject had:

○ Mini-Mental State Examination (MMSE) scores between 24 and 30,
inclusive. These scores indicate normal cognitive function.

○ A Clinical Dementia Rating (CDR) of 0, indicating no signs of
dementia.

○ No history of depression, Mild Cognitive Impairment (MCI), or any
form of dementia.

- The AD patients had:
○ MMSE scores between 20 and 26, inclusive, reflecting mild to
moderate cognitive impairment.

○ A CDR of 0.5 or 1.0, which corresponds to very mild or mild
dementia.

○ Conformity to the National Institute of Neurological and
Communicative Disorders and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS/ADRDA) criteria for
probable AD.

- Subjects with 3D MRI scans using a 3T scanner were selected. This
high-resolution imaging technique is crucial for accurately capturing
brain structures and changes related to AD.

Our proposed 3D CNN leverages the 3D nature of the MRI volume
consisting of the most crucial 2D slices and detects the key features
relevant to the progressive patterns of AD. Our training dataset consists
of 564 individuals, with 282 people being cognitively normal and the

remaining 282 being AD patients. All of the MRI scans were processed
through a standard preprocessing steps as depicted in Fig. 5.

3.3.3. Image preprocessing
The preprocessing of MRI scans involves removing irrelevant infor-

mation from the raw data, allowing for easier comparison of multiple
brain scans. In this study, all MRI volumes were processed before any
experimental steps were taken. This included registering 2D slices to a
standard template space, correcting inhomogeneities in 3D scans,
separating skull from brain tissue, and aligning 2D slices to a standard
template space.
In the first step, we used FreeSurser’s Freeview tool [47] to visualize

the data and found that some of the rawMRI scans were rotated by 180 ◦

during the formation phase. This step is essential for ensuring uniformity
in the processing and analysis of voxels across various platforms. To
reorient MRI scans in the correct view space, we used the fslreorient2std
software package to align flipped slices to the standard format. In the
next step, all MRI scans were passed through N4 bias field correction
algorithm available in Advanced Normalization Tools (ANT) [48] to
remove inhomogeneities. Inhomogeneities refer to low-frequency sig-
nals within the MRI scanner which can negatively impact the overall
quality of the images and must be corrected in the first place. In the third
step, we performed skull stripping to distinguish skull from non-skull
regions. Non skull regions refer to residual neck voxels and can inter-
fere with the classification task by adding noise and increasing the
dimensionality of the training data. We used the brain extraction tool
(BET) [49] from FSL package to perform skull stripping. Finally, all MRI
volumes were registered to a standard reference space, the MNI152
template [50]. The registration process involved transforming the MRI
scans through affine transformations such as scaling, rotating, trans-
lating, and shearing. In this study we used FLIRT tool from FSL to reg-
ister MRI scans toMNI152 template and correlation ratio was used as the
similarity metric during the registration process.

3.3.4. Experimental setup
The proposed approach improves the diagnostic process of AD pro-

gression by combining MRI and clinical scores. Experiments were con-
ducted on a workstation equipped with NVIDIA GeForce GTX 1060 and
16 GB of RAM. We tuned several hyperparameters that include learning
rate, training batch size, number of epochs, and best performing opti-
mizer. 5-fold stratified cross-validation was used to balance subject
distribution during training. The learning rate was set to 0.00015 with
momentum and weight decay values of 0.99 and 0.1e-5 respectively.
Using the Adam optimizer, the model reached the lowest training-
testing loss. The input batch size was set between 5–8 with no signifi-
cant improvement seen above or below this range. The number of
epochs was set to 120, with the training loss reaching its lowest point at
100 epochs and not decreasing further.

Evaluation metrics: To determine the model’s performance, the
generalization ability was evaluated using stratified k-fold cross-
validation. This method, with 5 folds, helps maintain the class distri-
bution balance and minimize the chance of biased learning. To measure
the model’s goodness-of-fit, we compute five standard evaluation met-
rics including precision, recall, F1-score, AUC and accuracy. These
metrics are frequently used in bioinformatics research and serve as a
comparison tool for different studies [14,51]. The accuracy of a model is
calculated as the percentage of correctly classified instances among all
predicted data instances. Precision measures the accuracy of positive
predictions, while recall, also known as sensitivity, computes the ability
to correctly identify actual positive instances. The F1-score combines
two metrics i.e., precision and recall and calculates the harmonic mean
of these twomeasures. Another widely used evaluationmetric is the area
under the curve (AUC), which takes into consideration both true positive
and false positive rates. An AUC value of 0.5 would indicate random
guessing, while a value of 1.0 would indicate a perfect classifier. The
mean AUC is determined by comparing the average likelihood of
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correctly classified elements from one category compared to another.
Model Architecture: In this study, we employed a grid-search based

hyperparameter tuning technique to optimize the performance of the
underlined framework. We conducted a thorough series of experiments
to refine the critical parameters of the model. We adjusted various pa-
rameters in the proposed deep convolutional framework that includes
number of 3D conv layers, kernel size in each layer (e.g., 3 × 3, 5 × 5),
the regularization coefficient applied to each layer, the number of dense
layers, and the number of dense units in each layer. The backbone
network is a lightweight 3D CNN that by nature can capture spatial and
temporal features simultaneously from 3D volumetric data. In this study,
we used 3D MRI volume composed of 110 2D middle slices that cover
the most important brain regions highly prone to AD. The architectural
design of the proposed 3D CNN is composed of convolutional, max-
pooling and dropout layers. After highly optimizing the proposed 3D
CNN, we came up using kernel size 3× 3× 3, and pooling size 2× 2× 2
throughout the network. Our proposed CNN is composed of five con-
volutions and three max-pooing layers. The first two convolution layers
utilize 32 kernels followed by a max-pooling and dropout layer. The
output of the initial two layers was regularized by a dropout threshold of
30%. In the third and fourth layers, 32 and 64 3D kernels were applied to
the output of the previous layers respectively. Afterward, a dropout
layers of 30% were applied to the output feature maps. In the fifth layer,
64 kernels followed by a 20% dropout coefficient were applied to the
output feature maps. The ReLU activation function was applied to all
hidden layers due to its simpler design that helps train a network faster.
It is important to note that, we do not use maxpooling layer after every
convolution layer but after two layers in order to maintain the spatial
features of 2D slices in the deeper layers. On the other hand, this
approach may lead to a longer training time or even models’ overfitting.
To address this problem, we used dropout and weight regularization
techniques to prevent overfitting and reduce training time. This strategy
helps stabilize the training process and avoid the corruption of the
feature space. The output from the fifth convolution layers is flattened to
1D feature vector which represents the compact features set of the entire
3D MRI volume. This features vector is further fused with CSs and used
for evaluating a group of ML classifiers including RF, DT, LR, SVM, and
DNN. The motivation behind various ML classifiers with different mo-
dalities was to select the most informative and discriminative feature set
in the disease identification process.

3.4. The design of the questionnaire

As mentioned earlier, a wide range of notes was taken into account in
designing the VR environment for older adults. As for evaluating the
suitability of the environment, a new questionnaire was produced using
existing questionnaires covering different aspects of the design based on
a 5 Likert scale. Utilizing questionnaires to test a product’s usability is an
affordable and effective approach. The designed questionnaire contains
a total of 27 questions categorized into five sections namely: User
Experience (UX), User Interface (UI), mechanics, in-env assistance, and
VR induced symptoms and effects (VRISE). These sections were created
by modifying and integrating three questionnaires namely: Virtual Re-
ality Neuroscience Questionnaire (VRNQ) [52], User Experience Ques-
tionnaire (UEQ) [53], and User Interface Questionnaire (UIQ) [54]. The
VRNQ includes 20 questions providing some information about the
overall level of the VR software quality as well as subcategories about
UX, game mechanics, in-game assistance, and VRISE. The primary
objective of the UEQ is to quickly and accurately quantify UX in terms of
usability. Lastly, the UIQ evaluates the interface in terms of Perceived
Usefulness (PU), Perceived Ease of Use (PEU), Perceived Performance
(PP), Expectations, Confirmation, Satisfaction, Continuance Intention
(CI), and Interface Quality (IQ).
Concerning the new questionnaire in this paper, the UX involves six

questions, five of which were obtained from modifying corresponding
questions in the VRNQ monitoring the degree of immersion, quality of

experience, graphics, sound, and VR hardware factors. The sixth ques-
tion is about stimulation and is obtained from UEQ. As for the UI section,
a total of eight questions were used according to Ref. The implemented
features in the VR environment were assessed in the mechanics section,
in which there are six questions about the navigation system (telepor-
tation without controllers and continuous movement with controllers)
and interactions with the objects. Questions 1 to 5 and question 6 were
obtained and modified respectively from VRNQ and UEQ. Regarding the
assistance provided for the patient inside the environment, three ques-
tions about audial instructions, visual instructions, and prompts were
employed from VRNQ. For the last section of the questionnaire, patients
were asked about four induced symptoms and effects namely: nausea,
disorientation, dizziness, and instability.

3.5. Procedure

The procedure of the experiment began with some initial introduc-
tion sessions for the participants after they had approved the consent
form. Then, they were asked to mimic the responses of the ADNI2
dataset so that the responses could be sent to the AI model as input
features. Fig. 4 indicates two stages from MoCA and MMSE cognitive
tests as examples. As can be seen, two avatars – a patient and an
examiner – were present in the environment, performing the procedure.
At the final stage, a total of 12 participants were selected randomly and
asked to fill out the designed questionnaire.

4. Results

4.1. AD diagnosis

We evaluated our model by conducting three experiments. The aim
was to investigate models’ performance using a single modality (i.e.,
MRI or CSs) or multimodality (MRI + CSs) in training input data. The
experiments were carried out in three steps: 1) MRI-based AD progres-
sion detection, 2) CS-based AD progression detection, and 3) progression
detection using a combination of MRI and CSs. The role of single and
multimodal data in AD diagnosis is depicted in Fig. 6. The main purpose
of designing the experiments in this way is to show the impact of each
modality in the overall performance of the studied models. To enhance
the reliability of a model, a stratified 5-fold cross-validation technique
was used for the models’ evaluation. To prevent data leakage, the MRI
scans used in training were not repeated in the testing process. The
performance of the classifiers was assessed by computing and comparing
the average performance of each model using five commonly used
evaluation metrics: precision, recall, F1 score, AUC, and accuracy.

Experiment 1. MRI based AD progression detection

In this experiment, we evaluated each ML classifier using MRI mo-
dality only. Then the results of multiple evaluation metrics were
recorded to assess the performance of each model. To determine the
performance and stability of each network, we also compared the AUC
score of each network.
Table 2 shows the results of the experiment that employed various

ML classifiers utilizing deep features obtained from a 3D CNN. The
performance of five models: RF, DT, LR, SVM, and DNN were compared.
The implementation of the four classifiers was done using scikit-learn
1.2.0 and Python 3.8. The DNN was implemented using PyTorch
1.1.2. We randomly split the training data into 80% training set and 20%
testing set at runtime using a stratified cross-validation technique at
each training fold. We trained the DNN part of the proposed framework
in an end-to-end manner and the testing results for each fold were
collected and averaged. In the case of training ML classifiers, we
employed a grid search technique to perform hyperparameter tuning
using deep features obtained from the proposed lightweight 3D CNN.We
repeated each experiment five times and reported the average results for
each metric along with the standard deviation value.
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Fig. 4. Two examples of the implemented cognitive tests, (a) Trail Making in MoCA - Examiner’s View, (b) Trail Making in MoCA - Patient’s View, (c) Language
Naming in MMSE - Examiner’s View, (d) Language Naming in MMSE - Patient’s View.

Fig. 5. Proposed framework of 3D CNN fused with clinical data for AD progression detection.
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Fig. 7 illustrates a performance comparison of five ML models using
the MRI modality, with the AUC as the evaluation metric. The LR, SVM,
and DNNmodels achieved an AUC score above 80%when using the MRI
modality alone. In particular, the LR model achieved the second-highest
AUC score, at 86%, while the DNN model outperformed all other
comparative models by achieving the highest AUC score of 87%. The
SVM model showed a better AUC score than the DT and RF models, at
85%, but lower than the LR and DNN models. When using the MRI
modality alone, the DT model achieved the lowest AUC among all
classifiers, at 79%.

Experiment 2. AD progression using CS modality

Experiment 2 shows the impact of incorporating clinical scores on
the detection of AD progression. We employed the same set of ML
classifiers as discussed in Experiment 1 and incorporated clinical scores
in the analysis. The primary objective was to assess the significance of
clinical scores in the disease identification process.
As shown in Table 3, all ML classifiers demonstrated a significant

improvement in disease identification compared to using only MRI
modality. LR, SVM, and DNN models achieved performance scores
above 90% in all metrics. This outcome highlights the importance of
clinical scores in disease identification. The DNN model outperformed
the performance of all other classifiers, achieving precision of 95±0.05,
recall of 94±0.02, F1-score of 95±0.04, AUC of 94±0.04, and accuracy
of 94±0.03. SVM also reported a significant improvement in overall

accuracy compared to the MRI modality alone, with precision of 93
±0.05, recall of 93±0.04, F1-score of 93±0.04, AUC of 92±0.04, and
accuracy of 94±0.03. LR also crossed 90% milestone in each metric but
the accuracy was lower compared to SVM and DNN. Other classifiers,
such as DT, also exhibited significant improvements in overall perfor-
mance compared to using MRI modality only and reported performance
in the range 85–90% in each metric.
The numerical features utilized for this study offer significant

Fig. 6. An experimental route map featuring single (MRI, CS) and multimodal (MRI + CS) medical data.

Table 2
Comparison of different ML classifiers using MRI input data.

ML
Model

Mean
Precision

Mean
Recall

Mean F1-
score

Mean AUC Mean
Accuracy

RF 84 ± 0.05 80 ± 0.06 81±0.04 81 ± 0.05 79 ± 0.03
DT 81 ± 0.04 79 ± 0.05 80±0.05 79 ± 0.06 79 ± 0.05
LR 89 ± 0.05 86 ± 0.04 87 ± 0.05 86 ± 0.04 85 ± 0.05
SVM 86 ± 0.04 87 ± 0.05 87±0.06 85 ± 0.05 86 ± 0.03
DNN 89 ± 0.04 88± 0.04 88±0.04 87 ± 0.04 87 ± 0.04

As depicted in Table 2, the highest accuracy was achieved by the DNN model,
with a precision of 89 ± 0.04, recall of 88 ± 0.04, F1-score of 88 ± 0.04, AUC of
87 ± 0.04, and accuracy of 77 ± 0.04. The LR and SVM models reported the
second-highest accuracy, with a precision of 89 ± 0.05, recall of 86 ± 0.05, F1-
score of 87 ± 0.05, AUC of 86 ± 0.04, and accuracy of 85 ± 0.05 for LR, and a
precision of 86 ± 0.04, recall of 87 ± 0.05, F1-score of 87 ± 0.06, AUC of 85 ±
0.05, and accuracy of 86 ± 0.0 for SVM, with slight variations in different
evaluation metrics. The RF model reported better performance than the DT, but
less than all other classifiers, with a precision of 84 ± 0.05, recall of 80 ± 0.06,
F1-score of 81 ± 0.04, AUC of 81 ± 0.05, and accuracy of 79 ± 0.03.

Fig. 7. Performance comparison of the different ML classifiers using mAUC
metric and MRI modality.

Table 3
Performance comparison of different ML classifiers using mAUC metric and
clinical scores.

ML
Model

Mean
Precision

Mean
Recall

Mean F1-
score

Mean
AUC

Mean
Accuracy

RF 86 ± 0.04 86 ± 0.05 86 ± 0.04 85 ± 0.05 86 ± 0.04
DT 89 ± 0.05 88 ± 0.04 89 ± 0.04 87 ± 0.03 89 ± 0.02
LR 93 ± 0.03 92 ± 0.03 91 ± 0.04 90 ± 0.04 92 ± 0.04
SVM 93 ± 0.05 93 ± 0.04 93 ± 0.04 92 ± 0.04 94 ± 0.03
DNN 95 ± 0.05 94 ± 0.02 95 ± 0.04 94 ± 0.04 94 ± 0.03
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insights into the detection and diagnosis of AD from both medical and
ML perspectives. Clinical assessments, including medical history, phys-
ical examination, cognitive tests like the MMSE or MoCA, and behav-
ioral assessments, are the most essential biomarkers for detecting and
monitoring AD by providing a comprehensive view of a patient’s
cognitive and functional status. Biomarkers, such as amyloid beta and
tau proteins detected through CSF analysis, PET imaging, and blood-
based assessment, offer objective, quantifiable data for early AD detec-
tion and progression tracking. Other features such as neuropsychologi-
cal evaluations assess cognitive functions like memory, executive
functioning, attention, language, and visuospatial skills, crucial for
differentiating AD from other cognitive disorders and tailoring inter-
vention strategies. For ML algorithms, these features collectively enable
accurate and robust models for early detection, diagnosis, and moni-
toring of AD, outperforming models based on neuroimaging modalities
only i.e., MRI.
Fig. 8 shows the performance comparison of five ML classifiers using

AUCmetric and CSs as sources of training data. As compared to using the
MRI modality, each model achieved a significant improvement in the
disease identification process in terms of achieved accuracy. The DNN
model, in particular, outperformed all other models in terms of achieved
AUC scores, with an 8% improvement in mean AUC scores compared to
using the MRI modality alone. Other models also showed a 5–10%
improvement in mean AUC scores in the achieved results. The signifi-
cant improvement of each model with the inclusion of cognitive scores
highlights the importance of chosen clinical scores in the disease iden-
tification process. Furthermore, each model was able to consider
important features during the training process that better represent
patients’ health status during the progression of AD. While the achieved
mAUC scores using CS improved overall accuracy compared to the MRI
modality, we observed unstable behavior characterized by large vari-
ance in reported accuracies in Experiment 1 and Experiment 2. Litera-
ture studies indicate that using multimodality in disease diagnosis
enhances the diagnostic process compared to single data modality usage.
Therefore, in Experiment 3, we explored the role of multimodality AD
diagnostic process.

Experiment 3. AD progression using multimodal data (MRI + CS)

The primary objective of Experiment 3 was to optimize all compar-
ative models using multimodal data particularly combining MRI and CS
features. The goal was to investigate AD’s progression detection by
merging information about patients’ cognitive abilities with MRI

features, which in turn was used to improve the overall accuracy of AD
diagnosis. In order to examine the progressive patterns of AD using
multimodal data, we trained each model using CSs fused with MRI
modality. In this way, the model was able to identify the key patterns
from each modality that is commonly used in the disease identification
process. The performance of different classifiers was further evaluated
using the AUC metric as discussed previously.
The results, shown in Table 4, demonstrate that by combining CSs

with MRI data, the DNN model outperformed all other models, with a
precision of 97 ± 0.02, recall of 95 ± 0.02, F1-score of 95 ± 0.02, AUC
of 96 ± 0.02, and accuracy of 94±0.03. The SVM model also showed
consistent results across all metrics, with a precision of 94 ± 0.03, recall
of 95 ± 0.02, F1-score of 94 ± 0.03, AUC of 93 ± 0.04, and accuracy of
94 ± 0.03. Both the LR and DT models achieved almost equal results
when using multiple modalities, and overall showed significant
improvement compared to using single modalities of MRI or clinical
scores alone. In general, combining multiple modalities represents more
complex features than using a single modality which makes the task of
identifying the disease more challenging. However, all models were able
to utilize the fused datasets to improve their performance, indicating
that they are robust to noise in the data and can effectively avoid its
effects. In addition, Table 4 highlights that using multiple modalities of
data is crucial in improving the overall performance and stability of ML
models, as well as helping reduce the variance compared to using a
single modality. From a medical perspective, it is logical to investigate
various modalities to achieve precise diagnosis. In terms of machine
learning, it indicates that the addition of multimodal data provided
supplementary information to the resulting feature set, thereby aiding
the models in refining their decision boundaries. The reported results in
this study are in line with earlier studies that supported the positive
aspect of multimodal data in enhancing the performance, stability, and
effectiveness of a trained model. By incorporating multimodal data, the
suggested model gains insight into the fundamental patterns linked to
disease progression from each modality throughout the training phase.
Fig. 9 demonstrates the impact of using multiple modalities on the

detection of AD progression by displaying the mAUC scores achieved
with multimodal data, specifically, the combination of MRI and CSs as
training input. The results indicate that utilizing multimodal training
data significantly improves the disease identification process for all
models. The DNN model outperforms all other models, achieving the
highest accuracy. The reported precision in the DNNmodel improved by
3% and 8% when compared to using cognitive scores or MRI modality
alone. Similar improvements were observed in other classifiers, such as
SVM, which reported a 6% improvement, and LR, which reported a 5%
improvement in precision when compared to using cognitive scores
alone. DT and RF also showed 4% and 6% improvements in precision
scores respectively, when compared to using cognitive scores alone.
Through the experiments, it was concluded that combining cognitive
scores with MRI features significantly boosted the stability and perfor-
mance of disease diagnosis models [55]. Biomarkers offer higher accu-
racy for early detection due to their sensitivity to biochemical changes,

Fig. 8. Comparison of different ML classifiers using clinical scores.

Table 4
Comparison of ML classifiers using multimodal data (MRI + clinical scores).

ML
Model

Mean
Precision

Mean
Recall

Mean F1-
score

Mean
AUC

Mean
Accuracy

RF 92 ± 0.02 90 ± 0.02 91 ± 0.02 90 ±

0.02
90 ± 0.03

DT 94 ± 0.03 93 ± 0.02 93 ± 0.03 94 ±

0.04
92 ± 0.03

LR 93 ± 0.04 94 ± 0.03 93 ± 0.03 94 ±

0.02
93 ± 0.03

SVM 94 ± 0.03 95 ±

0.02&
94 ± 0.03 93 ±

0.03
94 ± 0.02

DNN 97 ± 0.02 95 ± 0.02 95 ± 0.02 96 ±

0.02
94 ± 0.03
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while MRI provides important structural information. The integration of
clinical assessments, biomarkers, and neuropsychological evaluations
with the structural details of brain tissues offers a comprehensive
approach, enabling precise diagnosis and effective tracking of AD pro-
gression. For the most accurate diagnosis, a multimodal approach that
includes both biomarkers and MRI is recommended.

4.2. Designed environment

The design notes mentioned earlier were evaluated and the results
are indicated in Fig. 10. The responses to the UX section of the ques-
tionnaire highlight an acceptable level of experience. In fact, it can be
understood that the system performed well in motivating the partici-
pants, offering them an enjoyable experience as well as a feeling of
immersion. However, the quality of graphics and sound seems to be not
completely satisfying. Moreover, using the HMD for long periods ap-
pears to receive different feedback, mostly feeling almost comfortable.

The last three mentioned results indicate a need to explore graphics,
sound, and comfort aspects for offering a VR system for older people.
The next box plot, displayed in Fig. 10, is about the UI. A general
overview states the success of the designed UI. The results illustrate that
aspects namely: PU, PEU, Expectations, Confirmation, and IQ received
more positive feedback compared to other aspects. It seems the partic-
ipants found the interface a bit challenging to navigate through, a
negative impact on PP. Satisfaction and confirmation were also influ-
enced probably because of the navigation and received less positive
feedback. Moving forward with the mechanics of the proposed VR sys-
tem, all aspects received a score of three to five which can be a testimony
to the considered design notes. Regarding the navigation system in the
environment, participants found continuous movement using control-
lers easier than teleportation using hands. On the other hand, they took
the idea that manipulating objects was easier by hand rather than by
controllers. Furthermore, it seems the users could easily use the items in
the environment. Having said that, according to the last box plot of the
mechanics section, it can be inferred that most users stated a need for
additional help in order to perform the tasks.
In terms of in-env assistance, all three aspects namely audial and

visual assistance along with prompts received almost similar feedback.
That said, the users found prompts as the most effective assistance
approach, followed by visual and audial instructional assistance
respectively. Finally, as shown in Fig. 10(e), the designed VR environ-
ment performed acceptably in terms of inducing symptoms and effects,
nausea, disorientation, dizziness, and instability. The system prevented
the users from experiencing nausea and instability almost to an equal
level. However, dizziness seemed to happen among the users while
experiencing the environment, and disorientation was also another
induced effect.

5. Discussion

In this study, we proposed a lightweight 3D CNN that extracts high-
level, spatiotemporal features from 3D MRI volumes. These features
were then used to evaluate the performance of various ML classifiers.
The 3D CNN extracts features from both theMRI volume and the CSs and
combines them to create a feature vector, which is then fed into the ML
classifiers for the detection of AD progression. Our framework was
evaluated using MRI, CS, and a combination of MRI and CS data, and it
was found that the combination of both data sources produced the most

Fig. 9. Performance comparison of different ML classifiers using mAUC metric
and multimodality (MRI + clinical scores).

Fig. 10. Responses to the questionnaire in the form of box plot, (a) User Experience, (b) User Interface, (c) Mechanics, (d) In-env Assistance, (e) VR Induced
Symptoms and Effects.
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accurate and stable results using a DNN model.
Table 5 compares our method to the latest methods developed for AD

progression detection. Our findings suggest that many existing studies in
the AD domain only use a single slice or focus on a specific region of the
entire MRI volume, which is a limitation of most current techniques.
This leads to a significant loss of crucial information, which is essential
for maintaining the stability of the model in predicting diseases. For
example, Uysal et al. [56] employed a selective approach by utilizing
only data from the hippocampal region of the brain, which was extracted
using the ITK-SNAP tool. They utilized this data only to train ML models
for detecting AD. Nguyen. [31] and their team developed an AD pro-
gression detection model where they proposed minimal RNN to impute
large-scale missing values in the training data before evaluating a clas-
sifier. They reported 91% test accuracy with their proposed approach.
El-Sappagh and their team [14] employed a longitudinal dataset
including data collected at 15 different time points for progression
detection. However, their approach failed to consider the interval be-
tween the last available data and the time when the AD prediction was
performed. Abuhmed and their colleagues [20] developed a method for
AD progression detection that integrates deep models with several other
modalities collected at various time steps. The input data used for this
study included MRI, PET, neuropsychological tests, clinical scores, and
demographic data. They employed a variety of features, obtained from
the ADNI database, to perform disease diagnostic tasks. El-Sappagh et al.
[57] reported 98% precision in detecting AD progression using multi-
modal longitudinal data gathered at four distinct time steps. Their
research relied on large-scale data of 1029 subjects, comprising various
types of information such as demographics, cognitive scores, medica-
tions for brain disorders, non-brain disorder medications, and coexisting
disorders. They also tested several ML classifiers, including DT, LR, SVM,
and KNN.
Table 5 reports five aspects of each comparative study which in-

cludes the number of subjects used in this study, the modalities of data
used, the level of achieved performance, and the design of the archi-
tecture. The uniqueness of this study lies in the following characteristics.
This study leveraged 3D CNNs, which are particularly suited for
analyzing volumetric data inherent in medical imaging. Unlike 2D CNNs
that process images in two dimensions, 3D CNNs consider the depth
aspect, allowing for a more holistic analysis of the brain’s structure and
enabling the detection of subtle changes over time. The unique advan-
tage of using 3D CNNs in our study lies in their ability to capture the

spatial hierarchies in three-dimensional data, which is crucial for iden-
tifying patterns indicative of AD progression. This is because AD-related
changes are characterized by complex patterns in the brain’s 3D struc-
ture, such as amyloid plaques, neurofibrillary tangles, brain atrophy,
synaptic loss, and vascular changes. These pathological changes occur
across the three-dimensional space of the brain, affecting its structure
and connectivity. 3D CNN are particularly effective in recognizing these
patterns because they capture the intricate details and spatial relation-
ships inherent in the brain’s anatomy, unlike 2D representations that
may miss subtle volumetric changes. 3D CNNs can model the depth
information, hierarchical feature extraction, and spatial dependencies
essential for detecting the widespread and multifaceted nature of AD-
related changes, providing a more comprehensive and realistic anal-
ysis of the brain’s structure.
Furthermore, our 3D CNN model is designed to identify AD pro-

gression by learning from a large dataset of brain scans, which enables
the model to discern intricate patterns that are often imperceptible to
the human eye or missed by less sophisticated methods. The proposed
approach not only enhances the accuracy of AD identification but also
contributes to a more reliable prediction of the disease’s trajectory. In
contrast to other methods, such as traditional ML [22,56] that may
require handcrafted features or 2D CNNs that only analyze single slices
of the brain, our 3D CNN method processes a large portion of brain
volume simultaneously. This comprehensive analysis ensures that no
critical information is overlooked, leading to a more effective and early
identification of AD progression. As highlighted in the table, the pro-
posed framework demonstrated better results compared to many other
studies. The proposed system’s strong performance and stability make it
a prime foundation for developing a clinical support system for detecting
the progression of AD. However, there are few studies [20,51] that
outperform our proposed framework, and we noticed that, they might
own a large number of data instances in the training data or the dataset
used in this study contains time series or longitudinal data about the
patient. Despite the proposed model exhibiting superior performance
compared to other leading DL models in AD management, further ad-
vancements are needed prior to its implementation for diagnosing real
patients.
Regarding the VR part of the study, the research gap suggested

implementing different cognitive tests in a virtual environment as well
as designing the environments according to the needs of the target
audience which are older people. In terms of cognitive assessment, the

Table 5
Comparison of the proposed framework with various literature studies.

Paper, Year Data
samples

Data modality ML technique Performance

ACC PRE Recall F1-
score

AUC

[22], (2020) 449 MRI biomarkers Linear mixed effects 85.00 – 86.30 – 94.00
[31], (2020) 1677 Hippocampus features and CS RNN – – – – 91.00
[56], (2020) 485 Segmented hippocampal

regions
LR, KNN, SVM, DT, and RF 92.00 – 92.00 – –

[20], (2020) 1536 SMRI, PET, CS, assessment data, and neuropathological
data

CNN Bi-LSTM 92.62 94.02 98.82 92.56 –

[58], (2020) 216 MRI 3D DenseNet 88.90 – – – 92.50
[59], (2021) 151 MRI Temporally Structured SVM 90.00 – – – 96.20
[60], (2021) 492 Segmented hippocampus DeepAtrophy – – – – 88.00
[14], (2021) 1371 MRI, PET, CS, and Comorbidities Bidirectional LSTM 74.55 84.68 84.80 – –
[61], (2022) 1371 NS, MRI, CS, and CSF 2-staged AD progression

detection
93.87 94.07 94.07 94.07 –

[29], (2022) 1500 MRI RESU-Net 94.34 – – – –
[30], (2022) 400 MRI FDN-ADNet 90.83 – 95.00 – –
[62], (2022) 809 Multiple neuroimaging modalities Multi-Classification Framework – – – – 96.00
[57], (2022) 559 MRI, PET, CS, and medication

data
Ensemble Classifier 98.56 98.56 98.56 98.56 98.56

[63], (2023) 823 SMRI VGG-TSwinformer 77.20 – – – 81.53
[51], (2023) 1682 CNN, Demographics, and CS 3D-CNN-BRNN 94.00 97.00 95.00 – 96.90
Ours,
(2024)

560 MRI, CS 3DCNN-ML 97.00 95.00 95.00 96.00 94.00
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system incorporates a range of cognitive tasks tailored to the elderly
population, allowing for a more accurate and comprehensive assessment
of cognitive functions. As for the design of the environment, the findings
of the questionnaire indicated that the considered design notes per-
formed well in terms of suitability for the elderly. Simply put, the system
provides an immersive and engaging experience for the elderly, assisting
them with their motivation and participation in cognitive assessment
and training exercises. This, along with the results obtained from the AI
model, can support the idea of the paper which is the diagnosis of AD
using VR and AI. In fact, the claim that cognitive assessments can be
employed in a safe and regulated situation in VR has shown to be of
great value in the treatment and diagnosis of medical conditions, in this
case, AD.

6. Conclusion

The most serious type of dementia is Alzheimer’s disease, for which
there is presently no recognized medical treatment. The objective of this
paper was to evaluate a VR-AI-based system capable of AD diagnosis. A
virtual environment based on a wide range of design notes for older
adults was designed, followed by incorporating three important cogni-
tive tests: ADAS-Cog, MoCA, andMMSE. Afterward, a 3DCNN-MLmodel
was trained using ADNI2 CS and MRI and added to the virtual envi-
ronment so that the responses to the tasks can be fed to the model to
diagnose AD. The evaluation of the selected design notes and the way to
implement them showed a high level of suitability for the elderly.
Moreover, the trained AI performed well in the diagnosis of AD. On a
final note, the collected results show that the suggested integration of VR
and AI along with the implemented cognitive tests and design notes can
deliver precise indications of the presence of AD.

7. Limitations

While the present study demonstrates the promise for a VR-AI-based
system for AD diagnosis, there are a number of limitations from both VR
and AI sides that should be addressed in future research.
Regarding the VR related aspects, one of the primary challenges is

the potential barriers to adoption, including the relatively high cost of
VR technology and the need for technical expertise, which could limit
access to this diagnostic tool. To overcome this limitation, future
research should focus on developing more affordable and user-friendly
VR systems that can be easily integrated into clinical settings. Another
limitation is the potential gap between the virtual environment and real-
life scenarios, which may affect the accuracy of cognitive test results. As
mentioned in the literature review, paper-based tests used to diagnose
AD have been criticized for their limited ability to accurately capture
real-world cognitive abilities, as they often fail to reflect how individuals
function in their daily lives. This can be addressed with the help of VR,
even though there may still be differences between real and virtual
worlds. In this regard, further research is needed to ensure that VR-based
tests accurately reflect real-world cognitive abilities. Finally, there are
concerns over data security and privacy raised by the use of AI and VR
technology in healthcare. As the use of these technologies continues to
grow, it is essential to develop and implement robust protocols to protect
sensitive medical information.
As for the AI aspect, our model has some limitations that we plan to

address in future work. Currently, the study focuses primarily on per-
formance. However, in real medical environments, domain experts
require interpretable results in addition to accurate models. Therefore,
we will extend this study to evaluate and enhance our model’s inter-
pretability features. Moreover, this study is based on the baseline visit of
patients, which sometimes does not adequately capture the progressive
deterioration of brain tissues. To address this issue, we will include
follow-up visits to better understand disease progression. In future
studies, we also aim to incorporate additional modalities such as med-
ications, comorbidities, and PET scans, alongside MRI and cognitive

scores, to provide a more comprehensive analysis.
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