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Abstract: Background: Depression is a pervasive mental health condition, particularly affecting older
adults, where early detection and intervention are essential to mitigate its impact. This study presents
an explainable multi-layer dynamic ensemble framework designed to detect depression and assess
its severity, aiming to improve diagnostic precision and provide insights into contributing health
factors. Methods: Using data from the National Social Life, Health, and Aging Project (NSHAP),
this framework combines classical machine learning models, static ensemble methods, and dynamic
ensemble selection (DES) approaches across two stages: detection and severity prediction. The
depression detection stage classifies individuals as normal or depressed, while the severity prediction
stage further classifies depressed cases as mild or moderate-severe. Finally, a confirmation depression
scale prediction model estimates depression severity scores to support the two stages. Explainable
Al (XAI) techniques are applied to improve model interpretability, making the framework more
suitable for clinical applications. Results: The framework’s FIRE-KNOP DES algorithm demonstrated
high efficacy, achieving 88.33% accuracy in depression detection and 83.68% in severity prediction.
XAl analysis identified mental and non-mental health indicators as significant factors in the frame-
work’s performance, emphasizing the value of these features for accurate depression assessment.
Conclusions: This study emphasizes the potential of dynamic ensemble learning in mental health
assessments, particularly in detecting and evaluating depression severity. The findings provide a
strong foundation for future use of dynamic ensemble frameworks in mental health assessments,
demonstrating their potential for practical clinical applications.

Keywords: dynamic ensemble; explainable Al; depression detection; classifier optimization;

machine learning

1. Introduction

Major depressive disorder (MDD) is a pervasive and severe mental health condition
that affects individuals globally, affecting all age groups, demographics, and socioeconomic
boundaries. In 2023, more than 280 million people worldwide suffered from depression,
making it one of the leading causes of mental disability [1]. In the United States, by 2020,
the incremental economic burden of adults with MDD was around USD 326.2 billion,
which includes direct costs, suicide-related costs, and workplace costs [2]. This substantial
economic impact, along with the significant number of affected individuals, highlights the
urgent need for early intervention strategies to alleviate the extensive personal, societal,
and financial burdens of depression. The elderly population is particularly vulnerable
to depression, experiencing significant impacts despite lower overall prevalence rates
compared to younger age groups. In the United States, by 2021, approximately 4.5% of
adults aged 50 years and older suffer from MDD [3]. This represents a substantial number
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of individuals who face depression, with possible significant under-reporting due to social
stigma [4]. Factors such as chronic illness, loss of loved ones, and social isolation exacerbate
depression in seniors. The impact on this age group is severe, leading to reduced quality of
life, increased risk of physical illness, and higher mortality rates [5]. Furthermore, senior
people with depression are more likely to experience functional impairments and a decrease
in their ability to live independently, adding to the social and economic burden [5]. Early
detection of depression is critical for several reasons. First, timely identification enables
more effective treatment interventions [6]. Second, people with more severe depression
often exhibit resistance to treatment, making early intervention crucial to prevent further
deterioration [7-10]. Predicting the severity of depression is equally essential, as it allows
for personalized care. Patients with mild depression can receive tailored interventions,
while those with severe depression can be prioritized for more intensive treatment [11,12].
In addition, severe depression is strongly associated with an increased risk of suicide,
making it vital to identify and prioritize these cases for urgent intervention [13]. Therefore,
the ability to detect depression early and accurately predict its severity is essential for
effective treatment and prevention strategies.

Currently, depression screening is heavily based on self-report tools such as the Patient
Health Questionnaire 9 (PHQ-9), which is the most widely used screening instrument [14].
Although these tools have proven effective, they can be limited by factors such as delayed
diagnosis due to individuals not being aware of their condition or unwilling to seek help
due to stigma [4,15]. This can result in undiagnosed depression, and individuals can fall
deeper into the disorder without timely intervention. Therefore, identifying additional
factors that contribute to depression could help clinicians improve detection and severity
prediction without relying solely on self-report measures.

In this study, we explore a promising approach to exploiting data from indirect self-
reporting questionnaires on emotional health, social interactions, and daily experiences
with machine learning (ML) to detect the presence of depression and predict the severity of
depression. This approach also helps mitigate diagnosis delays, which often occur when
individuals are either unaware of their condition or face barriers such as stigma or limited
access to healthcare. Furthermore, self-report measures provide a noninvasive, private way
for older adults to assess their mental health, encouraging more proactive engagement
without the fear of judgment. Compared to clinical evaluations, indirect self-report mea-
sures are less expensive and more readily available, especially in community or telehealth
settings. This approach promotes self-awareness and preventive care, empowering older
adults to track their well-being and take timely action, whether through professional help
or lifestyle changes.

A growing body of literature has explored the application of ML models to detect
depression [16,17] and predict its severity [18,19]. However, a review of the existing
literature reveals several limitations. Most studies mainly employ classical and static
classifiers, which are limited in their adaptability and may not fully exploit the diversity
of data [20,21]. Ensemble methods have proven their superior performance compared to
classical methods [22-25]. However, static ensembles are based on a fixed pool of base
classifiers, which might not be suitable for all test examples. As a result, the generalizability
of these models is not good. The dynamic ensemble algorithms represent a more advanced
approach, dynamically selecting and combining multiple models based on specific criteria
for each instance or subset of instances [26,27]. Unlike static ensembles, which rely on a
fixed set of models, dynamic ensembles adaptively choose the most appropriate prediction
models, improving accuracy and performance [28]. This adaptability makes dynamic
ensembles particularly suited for complex tasks such as depression detection. To our
knowledge, no study in the literature has used dynamic ensembles to predict depression.
Improving the model’s performance is insufficient to achieve a physician’s trustworthiness.
There is a lack of personalized assessment in which the model can provide customized and
tailored decisions for different individuals. In addition, model explainability is crucial in
clinical settings to build trust and improve decision-making [29].
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Many studies lack explainable artificial intelligence (XAI) techniques to understand
how models detect depression or predict its severity, and they fail to identify the specific fea-
tures or concepts that contribute to an individual’s depression. Our study aims to address
these gaps by incorporating dynamic ensemble models and XAI techniques to provide a
more comprehensive understanding of depression detection and severity prediction. In
summary, the study contributes to the field with these points:

*  We propose an explainable, multilayer framework for the detection and prediction of
the severity of depression using dynamic ensemble selection (DES) techniques. The
proposed framework comprises three distinct layers. The first layer functions as a
detection model designed to predict the presence of depression. The second layer
focuses on the severity prediction, predicting the degree of depression in patients
already identified as depressed. Finally, the confirmation layer is a regression layer
that estimates an individual’s PHQ-9 score based on their specific features. By inte-
grating these three layers, our framework provides a comprehensive decision support
framework that not only detects depression but also assesses its severity and validates
the precision of the predictions through the estimation of the PHQ-9 score.

¢  In the detection and severity prediction phases, we assess the effectiveness of various
ML models using the National Social Life, Health, and Aging Project (NSHAP) dataset,
which comprises a diverse range of questionnaire responses from domains such as
social networks and relationships, as well as biomarker data like saliva samples and
blood pressure readings from older adults in the United States. This variety of features
provides valuable insights into which factors most strongly influence depression. The
models explored classical ML algorithms, static ensemble techniques, and, notably,
a selection of DES methods. The inclusion of DES represents a novel approach, as it
aims to assess whether DES can further optimize and enhance the performance of
classical ML and static ensemble models.

¢  Inthe scale prediction layer, we evaluate the performance of various static ensemble
regression models, alongside a voting regression model, in predicting the PHQ-9 score
from the same dataset. This approach validates the results of both the detection and
severity prediction layers, offering an additional confirmation of the accuracy and
reliability of the overall predictions.

*  We enhance the framework by incorporating XAl features to assist physicians in
understanding the model’s decision-making processes and provide insight into what
factors contribute to an individual’s depression presence or the severity of depression,
especially among older adults. This is achieved by applying XAI techniques to the
best-performing models in each of the three layers.

The study is organized as follows. Section 2 reviews the literature, Section 3 presents
the proposed model, Section 4 describes the experimental setup, Section 5 describes the
results of the three layers, Section 6 provides the model explainability and relevant factors
contributing to depression, and finally, Section 7 concludes the study.

2. Related Work

This section offers an exhaustive review of recent advancements in the detection of
depression, the prediction of severity of depression, and the prediction of depression scales
using ML techniques. In addition, it examines the potential of dynamic ensemble methods,
particularly within the mental health domain, highlighting studies that exhibit improved
accuracy and adaptability in predictive modeling. The related work analyzed herein forms
the basis for understanding the current research landscape and discerning the gaps that
our study seeks to fill.

2.1. Depression Detection

The detection of depression involves evaluating individuals to determine the presence
of MDD, often classified as normal or depressed. In clinical settings, standardized methods
have been developed to diagnose depression, typically conducted in two primary ways.



Diagnostics 2024, 14, 2385

40f41

First, clinical interviews serve as a conventional approach in which a mental health profes-
sional evaluates an individual’s mood, behaviors, thoughts, and physical symptoms over a
defined period (typically the last two weeks or more). Clinicians often rely on the Diag-
nostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), as a diagnostic
checklist to identify depression symptoms. DSM-5 has shown significant reliability through
test-retest studies, particularly in mood disorders. However, its reliability is relatively
lower when diagnosing disorders such as MDD or generalized anxiety disorder compared
to conditions such as autism spectrum disorder or borderline personality disorder [30].
In addition, numerous factors hinder people from seeking a clinical diagnosis, including
societal stigma [4], financial barriers, perceived lack of emotional distress, and concerns
about the efficacy of treatment [31]. Although clinical interviews remain the gold standard
for diagnosis, associated barriers make large-scale depression detection difficult. As a
result, self-report screening tools have emerged as a complementary solution.

Self-report screening instruments such as the PHQ-9 [32] and the Beck Depression
Inventory (BDI) [33] are extensively used for depression detection. These instruments
enable individuals to self-evaluate their mental health, providing a cost-effective and acces-
sible alternative to clinical consultations. Empirical evidence demonstrates that these tools,
particularly the PHQ-9, maintain reliability even in non-English-speaking countries [34,35].
Consequently, due to its established reliability, the PHQ-9 is employed as the principal
metric in our research. Nonetheless, the self-administrative nature of these instruments
necessitates that individuals actively seek evaluation and treatment, a task that can be
challenging for those experiencing depressive symptoms [31]. In addition to how different
cultures interpret and respond to PHQ-9 items, PHQ-9 alone can overdiagnose by generat-
ing false positives, particularly in patients with conditions such as bipolar disorder, anxiety,
or other psychiatric disorders [36]. Although PHQ-9 serves as a valuable instrument, it
is recommended that its results be utilized alongside other robust diagnostic assessment
tools to achieve a more comprehensive evaluation of depression, including severe cases,
and avoid false positives [37,38]. This study integrates ML techniques applied to multiple
diagnostic and clinical assessments to proactively identify individuals at risk, thereby
avoiding exclusive dependence on items from PHQ-9.

In recent years, numerous studies have explored the application of ML techniques
to detect depression. These approaches span various modalities, from audiovisual data
to neurophysiological responses and social media activity, each aimed at improving the
precision and timeliness of depression detection [39,40]. For example, Min et al. [16] lever-
aged audiovisual features from YouTube videos, demonstrating the potential of combining
audio and visual data for detecting depressive behaviors. Their XGBoost model achieved a
75.85% accuracy, highlighting that audiovisual features were particularly effective in early
detection on social media platforms. However, while this approach underscores the value
of integrating YouTube videos in mental health research, it is limited by the dependence
on user-generated content, which may lack consistency and introduce noise into the data.
In contrast, Li et al. [17] focused on a more controlled setting, using neurophysiological
data as electrophysiological responses (ERP) during a dot-probe task to study attentional
bias in patients with MDD. Their study used correlated feature selection to enhance the
classification accuracy, achieving a high rate of 94% with the K-Nearest Neighbor classifier.
This method of using ERP data, particularly the P300 component, provided more reliable
signals directly linked to brain activity. However, despite the high accuracy, ERP-based
methods require specialized equipment, making them less scalable and more resource-
intensive compared to audiovisual data analysis. A different modality, social media texts,
was explored by Govindasamy and Palanichamy [41], who applied sentiment analysis
on Twitter data to detect depression using Naive Bayes and hybrid Naive Bayes Decision
Tree classifiers. Their study achieved accuracies of 92.34% and 97.31% on datasets of 1000
and 3000 tweets, respectively. This approach benefits from the large volume of publicly
available social media data, allowing for scalable depression detection. However, sentiment
analysis is highly dependent on the quality of the labeled data, and the models may strug-
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gle with nuances in language or cultural differences in expressing emotions, which could
affect their generalizability across different populations. Malik, Shabaz, and Asenso [42]
took yet another approach by applying ML techniques to survey-based data, combining
Decision Tree, K-Nearest Neighbor, and Naive Bayes classifiers to analyze responses from
1694 individuals. Their study found the K-Nearest Neighbor to be the most effective, with
an accuracy of 92.32%. This method, relying on structured survey responses, provided
an accessible way to detect depression. However, surveys might not fully capture the
dynamic nature of depressive symptoms, unlike continuous monitoring via physiological
data. When comparing these traditional ML approaches, it is evident that each study
offers specific strengths but also faces unique limitations based on the type of data used.
For instance, models relying on structured data like surveys or sociodemographic factors
may offer simplicity and accessibility but risk missing out on the complexity of depressive
behaviors, which could be captured better through neurophysiological, behavioral data, or
health exam data. On the other hand, studies using neurophysiological signals or audiovi-
sual data offer greater accuracy but at the cost of requiring more specialized equipment or
large-scale user engagement.

Recent advances in deep learning have also been applied to depression detection,
with more sophisticated results but new challenges. Acharya et al. [43] employed a
convolutional neural network (CNN) model to analyze electroencephalogram (EEG) data,
achieving accuracies of 93.5% and 96.0% using signals from the left and right hemispheres,
respectively. Their study supports the hypothesis that depression is linked to hyperactivity
in the right hemisphere. While EEG-based deep learning models perform well in detecting
depression, their application is limited by the need for specialized equipment and the
complexity of interpreting EEG data, especially in large-scale deployments. Marriwala
and Chaudhar [44] introduced a hybrid deep learning model combining textual and audio
features, applying Long Short Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM)
models to the DAIC-WoZ database. Their findings showed that the audio CNN model
outperformed the textual model, achieving an impressive accuracy of 98%, highlighting the
effectiveness of audio features in detecting depression. However, like other deep learning
models, these approaches require extensive computational resources and large datasets
to generalize well. This poses a challenge for smaller-scale datasets like the 2005-2006
NSHAP dataset used in this research, which lacks the volume and diversity necessary
for training deep learning models effectively. Moreover, while deep learning models
demonstrate higher accuracy, they often operate as “black boxes”, making it difficult to
interpret the results or understand the importance of individual features. In contrast,
classical ML models not only perform comparably well with fewer resources but also offer
easier integration with XAl techniques, providing clearer insights into feature importance
and model decision-making processes.

2.2. Depression Severity Prediction

Depression severity prediction involves determining the level of depression in an indi-
vidual, which is critical to providing appropriate care and intervention. Various screening
tools categorize severity differently. For example, PHQ-9 divides depression into categories
such as mild, moderate, moderately severe, and severe [32], while the BDI uses minimal,
mild, moderate, and severe [33]. Self-screening tools such as these are more commonly
used to categorize the severity of depression than DSM-5 since DSM-5 is typically used
to diagnose depression as present or absent. Although similar to depression detection,
prediction of severity faces unique challenges. A significant limitation of self-screening
tools is that depressed individuals may be reluctant to seek self-evaluation [31], thus pre-
venting clinical evaluation and accurate severity assessment. This issue is particularly
concerning for those with severe depression, as they have a higher risk of suicide and other
comorbidities [13]. Therefore, accurate prediction of the severity of depression, especially
after an initial diagnosis of depression, is essential for appropriate and timely intervention.
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Here, ML techniques can play a crucial role in enhancing the accuracy and efficiency of
severity prediction.

Many studies have explored the application of ML to predict the severity of depression,
often using diverse data sources such as biomarkers, functional brain activity, and behav-
ioral data. These studies vary significantly in their approaches, each presenting unique
strengths and limitations. Bader et al. [45] explored the combination of oxidative stress
biomarkers (e.g., 8-isoprostane, 8-OHdG, and glutathione) with sociodemographic and
clinical data to predict depression severity using ML models. The study demonstrated that
integrating biomarkers with additional health-related factors improved detection accuracy,
with oxidative stress markers ranked as the most critical predictors. While the Random
Forest classifier consistently outperformed other models, the limitation here lies in the com-
plexity of collecting and analyzing biomarkers, which may not be readily accessible in all
healthcare settings. Furthermore, biomarkers like oxidative stress markers may vary based
on factors unrelated to depression, such as physical health conditions, which could intro-
duce noise into the model and limit its generalizability. In contrast, Huang et al. [46] took a
functional near-infrared spectroscopy (fNIRS) approach, analyzing brain activity to classify
mild and severe depression. Their support vector machine model achieved a high accuracy
of 92.8%, demonstrating the effectiveness of combining temporal and correlation features
from brain data. While this method offers a more objective diagnostic tool, the primary
limitation is its dependency on specialized equipment (fNIRS), which is costly and requires
technical expertise, making it less feasible for widespread clinical use. Additionally, like
oxidative biomarkers, brain activity data may reflect other cognitive or physiological states,
potentially affecting the model’s specificity in real-world applications. Choudhary et al.
[47] took a different approach by leveraging passive smartphone data, such as digital
behavioral markers and gyroscope sensor data, to predict depression severity. This method
offers a non-invasive and continuous monitoring solution, achieving an accuracy of 87%
for a two-class model (none vs. severe) and 78% for a three-class model. However, while
smartphone data are scalable and convenient, its reliance on self-reported PHQ-9 scores as
a ground truth introduces subjectivity, and the slight reduction in accuracy when incorpo-
rating gyroscope data suggests potential noise from irrelevant data sources. Shin et al. [48]
examined voice as a potential biomarker for detecting both minor and major depressive
episodes, utilizing voice features extracted from interviews. Their model achieved an Area
Under Curve (AUC) of 65.9%, with 65.6% sensitivity and 66.2% specificity, indicating the
potential for voice analysis in distinguishing between depression severities. However, a
major limitation of this study is the small sample size (93 participants), which hinders the
generalizability of the results. Moreover, voice data can be influenced by numerous external
factors, such as physical illness or environmental noise, which complicates its use as a
standalone biomarker for depression severity. Additionally, the relatively low performance
of the model compared to others in the field suggests that more research is needed to fully
capture the relationship between voice characteristics and depression severity.

Across these studies, the contrast between objective physiological data (biomarkers,
brain activity, and voice features) and passive behavioral data (smartphone usage) is clear.
While physiological data often lead to higher predictive accuracy, the need for specialized
equipment (e.g., INIRS, oxidative stress biomarker assays) limits the scalability and accessi-
bility of these approaches. On the other hand, behavioral data collected from smartphones
provides a scalable, non-invasive solution but is prone to noise and subjectivity, especially
when paired with self-reported depression scores.

In addition to traditional ML methods, deep learning techniques have been applied
to predict depression severity, demonstrating high accuracy but also introducing new
challenges. Mao et al. [49] employed a multimodal approach, combining speech and text
data to predict depression severity across five classes. Their model, trained on the DAIC-
WOZ dataset, achieved an impressive Fl-score of 0.9870 at the sequence level and 0.9074 at
the patient level for the audio modality. Despite the promising results, the approach faces
significant limitations due to the resource-intensive nature of deep learning models. These
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models require large datasets, high computational power, and often function as “black
boxes”, making it difficult to interpret feature importance and understand how predictions
are made. This lack of transparency and the computational demands pose challenges for
their practical deployment in clinical settings.

When comparing deep learning approaches to traditional ML models, the contrast be-
tween performance and explainability becomes apparent. While deep learning models like
those proposed by Mao et al. achieve higher accuracy in predicting depression severity, they
suffer from black-box limitations and require substantial data and computational resources.
In contrast, traditional ML models, while often slightly less accurate, provide more inter-
pretable results and can be applied in settings where computational power or large datasets
are not readily available. The trade-off between interpretability and performance is a key
consideration in selecting the appropriate model for predicting depression severity.

2.3. Depression Scale Prediction

Depression scales, such as the PHQ-9, are widely used due to their ease of use, low cost,
and ability to provide quantitative estimates for both depression diagnosis and severity.
Our study used the PHQ-9 scale, similar to many of the studies mentioned. Although
these studies may use different versions of the PHQ-9, such as the PHQ-8 or variations
adapted for specific populations, they still offer valuable validation for using a regression
layer in predicting depression severity. This alignment strengthens the methodological
consistency of our model, ensuring that our numerical estimation approach is grounded in
well-established clinical practice.

Jin et al. [50] developed a generalized multilevel Poisson regression model to predict
depression severity in patients with diabetes, using PHQ-9 scores to assess depression over
time. With 29 factors analyzed and a root mean square error (RMSE) of around 4, their model
provided both population-level and patient-specific predictions. Although Jin et al. focused
on diabetes, limiting the generalizability to broader populations, their use of longitudinal data
and PHQ-9 reinforces the validity of our approach. However, the reliance on clinical trial data,
which may not reflect real-world conditions, introduces a potential limitation. Syed et al. [51]
used a different version of the PHQ-9 scale as part of the audio/visual emotion challenge
to predict depression severity based on biomarkers of psychomotor retardation, including
audio, video, and motion capture data. Their model achieved an RMSE of 6.34, indicating
more errors compared to Jin et al.’s study. The higher error, alongside the complexity of data
collection using motion capture, suggests that while multimodal data offer comprehensive
insights, it also introduces noise and challenges in practical application. Aharonson et al. [52]
used PHQ-8 scores to predict depression severity from speech data, introducing two ML
architectures. Their second model, which grouped participants by severity class before
applying regression, achieved an RMSE of 4.1, outperforming previous studies with RMSEs
between 6.32 and 6.94. However, a limitation of Aharonson et al.’s work is the small dataset
size (189 participants), which limits generalizability. Additionally, while speech-based models
are scalable, they can suffer from variability in audio quality, potentially reducing prediction
accuracy in diverse environments.

Despite the limitations presented in these studies—such as the focus on specific
populations in Jin et al.’s study [50], the complexity of multimodal data collection in
Syed et al.’s work [51], and the small dataset size in Aharonson et al.’s research [52]—they
collectively demonstrate that using the PHQ-9 scale for predicting depression severity
is a valid and reliable approach. These studies validate the PHQ-9 and its variants (e.g.,
PHQ-8) as effective tools in ML models for quantifying depression levels, offering robust
performance across various methodologies and data sources. The consistency of results,
despite different contexts and datasets, further supports the applicability of the PHQ-9
scale in predictive models for depression diagnosis and severity assessment, underscoring
its value in both clinical and ML environments.
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2.4. Dynamic Ensemble

Model stability and performance can be significantly improved through the use of
ensemble methods, which include techniques like bagging, boosting, and stacking [53-55].
These methods typically employ a variety of base models, ranging from decision trees to more
advanced classifiers such as support vector machines and neural networks. Recent studies
have successfully applied these ensemble techniques to tasks like depression detection and
severity prediction, utilizing classifiers such as random forests, gradient-boosting machines,
and deep learning models, as discussed earlier. However, most of these studies have relied on
static ensemble techniques, where the selection of base classifiers occurs only once during the
training phase. A novel and increasingly promising approach to ensemble learning is DES, in
which classifiers are dynamically chosen for each new instance to be classified [28]. In DES, the
system first evaluates the competence level of each classifier in a pool of available classifiers.
Based on this assessment, an ensemble is dynamically formed, selecting the most competent
classifiers to predict the label for the specific query sample. The key idea behind DES is that not
every classifier is equally capable of classifying all unknown samples; instead, each classifier
specializes in a distinct local region of the feature space. Therefore, the challenge lies in
dynamically identifying and selecting the most suitable classifiers for each individual sample.
Various methods have been developed to address this, including techniques such as KNORA-
E, KNORA-U, DES-KNN, and the Frienemy Indecision Region (FIRE) framework [56]. Several
studies have explored the use of dynamic ensemble methods in medical applications. For
example, KP, Muhammed Niyas, and Thiyagarajan (2021) aimed to improve the classification
of healthy individuals, patients with mild cognitive impairment (MCI) and patients with
Alzheimer’s disease (AD) at the baseline stage using data from the Alzheimer’s Disease
Neuroimaging Initiative-TADPOLE dataset. This dataset includes multimodal features such
as medical imaging, cerebrospinal fluid, cognitive tests, and demographic information. The
study compared the performance of DES algorithms with traditional ML classifiers, evaluating
both based on metrics like balanced classification accuracy, sensitivity, and specificity. Their
results showed that the DES algorithms improved the classifier performance, particularly in
distinguishing between healthy individuals, patients with MCI, and those with AD [57]. In
the context of depression, Janardhan, Naulegari, and Nandhini Kumaresh [58] developed a
four-stage ML classification system for the detection of depression using acoustic parameters.
Speech recordings were obtained from the DAIC-WOZ dataset, and the eGeMAPS feature
set was extracted. To address the class imbalance, adaptive synthetic resampling and data
preprocessing were applied. Three feature selection methods were used: Borruta, SVM-REFE,
and Fisher score to identify relevant features. In the fourth stage, several classifiers were
tested with hyperparameter tuning performed via GridSearchCV during a 10-fold cross-
validation. DES classifiers, particularly the KNORAU, were used to improve accuracy. The
study found that the KNORAU, using 15 features selected by Fisher’s score, achieved the
highest accuracy compared to individual classical ML or static ensemble classifiers on the
DAIC-WOZ dataset. Despite the potential effectiveness of dynamic ensemble methods, very
few studies in the literature have applied them to depression analysis. To our knowledge,
no existing studies have yet utilized dynamic ensemble techniques in a unified framework
for both depression detection and severity prediction. This represents a significant gap in
current research, highlighting the potential of future work to explore the benefits of dynamic
ensemble methods in comprehensive depression analysis.

3. Proposed Framework

Figure 1 illustrates the proposed model for depression detection, severity prediction,
and scale prediction. The primary objective of this model is to deliver accurate and inter-
pretable predictions. The model is structured into two main layers and one confirmation
layer. The two main layers include the detection layer, which distinguishes between in-
dividuals with MDD and individuals without MDD, as well as the severity prediction
layer, which differentiates between mildly depressed and moderately—severely depressed
individuals. The third layer, referred to as the “confirmation layer” serves as a regression
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layer that predicts the PHQ-9 score for each individual. This layer further substantiates
the predictions made by the two main layers, providing an additional level of validation
and reinforcing the accuracy and reliability of the overall model. Each of the two main
layers will utilize a collection of ML models, including classical ML models, static en-
semble models, and DES models. The confirmation layer will only use static ensemble
regressors. These models are compared using default hyperparameters with no feature
selection, default hyperparameters with feature selection, and optimized hyperparameters
with feature selection. The model with the best statistical performance is then extended
to add XAI capabilities using different techniques. For ML engineers, XAl helps evaluate
model stability, identify biases, and ensure that decisions are based on sound, interpretable
logic, thereby improving model performance and trustworthiness. In clinical settings,
XAl enables healthcare professionals to better understand the key factors driving model
predictions, improving confidence in the model’s decision, and facilitating more informed
diagnoses and treatments for MDD. This fosters greater trust between clinicians and Al
systems, promoting responsible deployment of Al in mental health care.
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Figure 1. The architecture of the proposed framework. Abbreviations: National Social Life, Health,
and Aging Project (NSHAP); explainable artificial intelligence (XAI).

3.1. Data Collection

This study uses the 20052006 iteration of the NSHAP dataset. Initiated in 2005-2006,
NSHAP is a comprehensive longitudinal study aimed at examining the intricate relationships
between social connections, health outcomes, and aging among older adults in the United
States. Conducted by the National Opinion Research Center in collaboration with principal
investigators from the University of Chicago, the study involved more than 3000 face-to-face
interviews and the collection of biomeasures within participants” homes. The sample was
nationally representative, consisting of adults aged 57 to 85. The NSHAP dataset offers a
wealth of variables that span multiple domains, including social networks, relationships,
interviews, physical health, and biomarker data, such as saliva samples and blood pressure
readings. In addition, the data set includes a robust set of mental health assessments,
providing valuable information on the psychological well-being of the participants. These
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mental health measures are especially pertinent to study the prevalence and impact of
conditions such as depression in the aging population [59]. This dataset is well suited
for our research objectives due to its extensive variety of features, which allow for a
comprehensive analysis of the factors that contribute to depression. Not only does it
allow us to identify key contributors to depression in individuals, but it also provides the
opportunity to explore the factors that exacerbate more severe forms of depression. These
data are available at https://doi.org/10.3886/ICPSR20541.v10 (accessed on 25 April 2024).

3.2. Feature and Entry Exclusion
3.2.1. Feature Exclusion

The NSHAP dataset originally comprised 820 features, but only 316 features were
selected based on specific criteria. Initially, 264 features were excluded because they were
missing in more than 25% of the entries. Subsequently, 222 features related to questions
about whether participants had ever taken specific medications were removed, as the ma-
jority of responses were negative, indicating low relevance. However, specific medication
features that showed a high correlation with the FLTDEP variable (felt depression) were
retained to identify possible connections to depression. In addition, nine irrelevant features,
such as interview IDs or survey numbers, that do not have analytical value were removed.
The other nine features directly used to categorize depression levels were also removed to
avoid training the model on the same criteria used for categorization, ensuring unbiased
model development. By excluding features with a high percentage of missing data and
those with low relevance, the model becomes more robust to noise and better equipped to
generalize to new data. The elimination of irrelevant or redundant features reduces the risk
of overfitting, where the model might learn specific patterns that do not generalize beyond
the training dataset. Furthermore, focusing on the most relevant features allows the model
to learn meaningful relationships that contribute to better predictions of depression. The
inclusion of medication features with high correlation to depression ensures that the model
remains sensitive to factors that might influence mental health, improving its ability to
identify at-risk individuals. Overall, this careful feature selection enhances the model’s
accuracy, interpretability, and efficiency in both training and deployment scenarios. This
selection process resulted in 316 features, which are organized into categories, as shown
in Figure 2. These categories are divided by the original researchers of this dataset into
questionnaire features and health examination features, each with their subcategories,
which facilitates a structured approach to the analysis in Section 6 [59].

3.2.2. Entry Exclusion

The initial NSHAP dataset consisted of 3005 individuals. However, due to some
entries containing missing responses to the questions used to calculate PHQ-9 scores, only
2763 entries were deemed suitable for analysis. Although imputation techniques can be
applied to other variables within the dataset, imputing values for the PHQ-9 was deemed
inappropriate, as this instrument serves as the primary measure for categorizing depression
status. Excluding entries with missing PHQ-9 responses ensures that the dataset used for
model training and testing is reliable and free from the biases that could arise from imputed
values for this variable. Of the remaining 2763 entries, 1308 individuals were classified as
having no depression symptoms (normal), while 1455 were classified as depressed.
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Figure 2. Inclusion criteria for entry and features. Abbreviations: Patient Health Questionnaire 9 (PHQ-9).

3.3. Classifying Entries Through the PHQ-9 Scale

The NSHAP dataset focuses on the general well-being of older Americans. Given its
broad scope, the dataset does not include a specific depression categorization, as it covers a
wide range of topics. However, it contains mental health questions that assess the mental
health of participants in various categories. To address this, we can take advantage of PHQ-
9, a widely recognized tool used to detect, diagnose, and measure the severity of depression.
The PHQ-9 consists of nine questions that evaluate the frequency of depressive symptoms
over the past two weeks, with responses ranging from “0” (not at all) to “3” (nearly every
day). The total score ranges from 0 to 27, with higher scores indicating a higher severity of
depression [32]. Figure 3 illustrates the mapping process in which each PHQ-9 question
is matched to the corresponding questions of the NSHAP dataset that are as similar as
possible. The response options (0-3) are aligned with the PHQ-9 scale, allowing for a
coherent categorization of entries based on the PHQ-9 framework. The categorization of
the entries was performed using the following mapping: normal (0—4), mild depression
(5-9), and moderate to severe depression (10-27), based on the original categorizations of
PHQ-9. Subsequently, the detection layer is designed to distinguish between normal and
depressed individuals, where the depressed category includes mild and moderate—severe
depression. The severity prediction layer, which focuses solely on depressed individuals,
differentiates between mild and moderate—severe cases. The regression layer uses the entire
dataset to predict the PHQ-9 scores of individuals.

Table 1 presents the results of a chi-square test comparing a selection of categorical
features between normal and depressed individuals. The results show that several fea-
tures have p-values < 0.001, indicating a significant association between these features
and the depression categories, thereby supporting the effectiveness of the categorization
process. This is consistent with intuitive expectations, as features such as “self-rated general
happiness” display very low p-values, suggesting a strong correlation with depression
status. Thus, the categorization approach appeared to be valid and aligned with the data.
Additionally, as part of further exploratory analysis, a comparison of numerical features
between depressed and normal individuals is provided in Supplementary Table S15.



Diagnostics 2024, 14, 2385 13 of 41

NSHAP dataset

} PHQ9 Questions NSHAP Questions
Little interest or pleasure in -l .
: doing things > | could not get going :
; Feeling down, depressed, or > I felt depressed '
. hopeless !
' Trouble falling or staying > My sleep was restless '
. asleep :
: Feeling tired or having little w| | felt that everything | did was |
: energy 7 an effort

! . . w| 1did not feel like eating; my
: Poor appetite or overeating > appetite was poor

Feeling bad about yourself -

or that you are a failure or hfelticonfidentlaboutimy

' ' P ‘
; e e e e »| ability to handlegroblems :
family down (reversed) i
Trouble concentrating on
. things, such as reading the w| [could sit at ease and feel !

newspaper or watching - relaxed (reversed) '

television

Being so figety or restless
! that you have been moving
. around a lot more than usual

« | | felt restless as if | had to be
d on the move '

Thoughts that you would be Worrying thoughts went

better off 3ii(:;:{f0f hurting > through my mind
| PHQ-9 Scale NSHAP Scale :
0: Not at all 0: Rarely/none of the time
‘| 1:Several days 1: Some of the time :
; 2: More than half the days 5. Occasionally :
/| 3 Nearly every day 3: Most of the time 5

Categorizing Depression Number of patients:
PHQ-9 scales: 1. Normal entries (1308)
1. 0-4: Normal 2. Depressed entries (1455)

: 2.5-9: Mild 2.1 Mild depression (940)
3. 10-27: Moderate-Severe 2.2 Moderate-Severe depression (515)

Figure 3. Categorizing entries into depression categories (normal, mild depression, moderate—
severe depression).

Table 1. Chi-square test on a selection of categorical features (normal and depressed).

Feature Description Chi-Square Value p-Value
Interviewer’s rating for interviewee’s posture 62.7900 7.51 x 10713
Happiness in current/past relationship 58.1990 1.04 x 10710
Numerical questions performance 18.9570 1.34 x 1072
Freq of internet usage 63.7290 2.06 x 10712
Self-rated general happiness 330.409 297 x 10770
Gender 26.6790 2.40 x 107
Difficulty getting out of bed 126.823 262 x107%

Disabled 81.7890 1.51 x 10719
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3.4. Data Pre-Processing

After certain entries and features are excluded, the data must undergo pre-processing
to ensure that they are suitable for model processing. This preprocessing includes encoding
categorical labels and imputing missing values to create a complete and analyzable dataset.

3.4.1. Label Encode

There are numerical and categorical features in our tabular dataset. Since many models
cannot process non-integer values, label encoding is necessary for the categorical features.
Label encoding was chosen due to its simplicity and efficiency, particularly given that
many of the categorical features are ordinal, such as scales for mental health questions.
Additionally, for non-ordinal features, most are binary, making label encoding a suitable
and straightforward choice.

3.4.2. Data Imputation

Certain entries in the dataset exhibit missing values in various features. To address
these gaps, median imputation within their specific categories has been identified as the
most effective method based on empirical trials. This technique ensures that the imputed
values accurately reflect their respective categories, thereby enhancing the overall integrity
of the dataset. Imputing missing values is important as these features contribute to the
model’s robustness and generalizability. Without imputation, the model could be forced to
discard incomplete data, potentially leading to reduced sample size and introducing bias.
This could negatively impact the model’s performance, especially in capturing key patterns
and relationships within the data.

3.4.3. Data Preparation

This section covers data splitting, data balancing, and data normalization. These are
essential steps in developing a robust and accurate ML model.

3.4.4. Data Splitting

The dataset is divided into 70% for training and 30% for testing. This separation is
conducted prior to balancing and normalization to prevent data leakage. The division
process is repeated 10 times, and the average results, along with standard deviations, are
reported to ensure the generalization of the model.

3.4.5. Data Balancing

The dataset is relatively balanced, with the detection layer showing a ratio of ap-
proximately 1.11:1 (depressed to normal) and the severity prediction layer showing a
ratio of approximately 1.83:1 (mild to moderate-severe). However, data balancing was
still performed to ensure the model is both robust and fair, preventing bias towards the
more prevalent class. To achieve this, the Synthetic Minority Over-sampling Technique
(SMOTE), a method that generates synthetic samples for the minority class to balance the
dataset, was applied to the training data alone [60]. Additionally, random undersampling
was performed on the test data to ensure that accuracy metrics reflect a fair distribution
of categories, allowing for an accurate assessment of the model’s performance across
both categories.

3.4.6. Data Normalization

After splitting and balancing the dataset, normalization is performed using the min—
max scaling technique to transform the data into a range with a mean of zero and a standard
deviation of one. The scaler is fitted on the training data and subsequently applied to the
testing data without refitting to prevent data leakage issues.
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3.5. Depression Detection and Severity Prediction Layers

In this stage, a comparative performance analysis was conducted across various
ML models. Initially, classical ML models were employed, including Decision Tree (DT),
Logistic Regression (LR), Naive Bayes (NB), K-Neighbors (KN), Multilayer Perceptron
(MLP), and Support Vector Classification (SVC). Following this, static ensemble models
such as Random Forest (RF), XGBoost (XGB), Gradient Boosting (GB), AdaBoost (AB),
CatBoost (CB), LightGBM (LGBM), and Voting Classifier (Vot) were evaluated. Finally,
state-of-the-art DES algorithms were evaluated, including KNORAE, KNORAU, KNOP,
DESMI, METADES, DESKNN, and DESP, along with their FIRE-enhanced versions: FIRE-
KNORA-U, FIRE-KNORA-E, FIRE-METADES, FIRE-DESKNN, FIRE-DESP, and FIRE-
KNOP. The FIRE framework enhances DES by focusing on classifiers capable of accurately
distinguishing between ambiguous samples of different classes (frienemies) in indecision
regions, thus improving overall classification performance [56].

While many classical ML models and static ensemble techniques have been applied
to the field of depression detection and severity prediction [16,18,61], there has been
limited exploration of DES. Static ensemble models generally outperform individual base
classifiers [28], which is why they are often preferred. However, DES differs by selecting the
most competent base classifiers for each new test sample in real-time, potentially improving
accuracy [28]. Despite the potential of dynamic ensemble models [26,62,63], they remain
underexplored in depression detection, particularly within the NSHAP dataset, where
they have not, to our knowledge, been applied. Therefore, this study proposes the use
of DES to improve the performance of the Al model in this field. We comprehensively
evaluate classical, static, and dynamic models using default hyperparameters, optimized
hyperparameters, with feature selection, and without feature selection, providing a detailed
performance comparison.

3.6. PHQ-9 Scale Prediction Layer

The confirmation layer in the proposed framework serves as a regression layer aimed
at predicting individual PHQ-9 scores. As its primary function is to provide additional
validation and robustness to the predictions made by the main layers, only static ensemble
regression algorithms are employed at this stage. The regression models utilized in this
layer include CatBoost Regressor (CBR), XGBoost Regressor (XGBR), LightGBM Regressor
(LGBMR), Gradient Boosting Regressor (GBR), Random Forest Regressor (RFR), Extra Trees
Regressor (ETR), and AdaBoost Regressor (ABR).

3.7. Explainable Artificial Intelligence

XAI fosters transparency, trust, and ethical practices in Al systems. Transparent Al is
essential for users and stakeholders to understand and trust decision-making processes,
particularly in high-stakes domains such as healthcare. XAl addresses this need by provid-
ing interpretable insights into how Al models arrive at their predictions, enabling users
to comprehend and trust the technology’s outcomes. This transparency is also crucial
for ensuring ethical Al practices, such as fairness, accountability, and responsibility. It is
challenging to uphold these ethical principles without clear insights into how AI mod-
els function. Moreover, XAl facilitates regulatory compliance, with frameworks such as
the General Data Protection Regulation mandating explanations for decisions made by
automated systems, ensuring the transparency necessary for legal adherence [64]. In the
medical domain, XAl is particularly indispensable. According to Chaddad et al. (2023),
adopting interpretable and transparent Al systems in healthcare is necessary to gain the
trust of medical professionals and patients. XAl techniques such as feature visualization,
saliency maps, and DTs have been successfully employed to enhance the interpretability
of Al models in diagnostics, treatment planning, and patient management. This trans-
parency is crucial to effectively integrate Al into clinical practice and ensure that clinicians
can trust and rely on Al-assisted decision-making [65]. In mental health, XAl is gaining
traction as a tool to enhance the precision and accessibility of mental health assessments
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and interventions. Byeon (2023) highlights how XAl, particularly through methods like
SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explana-
tion (LIME), is being used to predict depression and assist in expert decision-making. By
improving the interpretability of Al models in psychiatric applications, XAl plays a crucial
role in increasing the acceptance of Al in mental health, particularly in identifying high-risk
individuals and guiding treatment decisions [66].

Given the growing importance of XAl in promoting ethical Al development, ensur-
ing regulatory compliance, and fostering trust, its incorporation into ML applications is
essential. Explainability techniques provide deeper insights into how Al models generate
predictions, building user confidence in the models” outputs. Specifically, XAI allows for
a clear understanding of the factors that drive the model’s predictions, particularly in
identifying depression and assessing its severity in different stages of the framework. In the
proposed framework for depression detection and severity prediction, various explainabil-
ity techniques were applied to visualize and interpret the best-performing models at each
layer. SHAP summary plots were generated to offer a global view of feature importance,
detailing how specific features influence the model’s overall predictions. SHAP beeswarm
plots complemented this by showing the distribution of feature impacts across individual
instances. In addition, DT visualizations were employed to explain the hierarchical struc-
ture of decision-making, with decision-tree rule paths providing step-by-step insight into
how individual predictions are made. For more instance-specific analysis, waterfall plots
were created to break down feature contributions for both depression detection and severity
prediction. These explainability techniques provide a comprehensive understanding of
the key factors that influence the predictions of the model, providing critical information
on the presence and severity of depression. By improving transparency and trust in the
model, XAl facilitates the responsible deployment of Al systems in clinical and real-world
settings, ensuring that these tools can be used confidently by healthcare professionals and
end users alike.

4. Experimental Setup

The experiments in this study were performed on a system with the following spec-
ifications: an AMD Ryzen 9 5900HS CPU running at 3.3 GHz and 16 GB of RAM. The
operating system used was Windows 11. The software environment included Python 3.12.3
with key libraries such as Imbalanced-learn 0.12.2, Numpy 1.26.4, Orange3 3.37.0, Pandas
2.2.2, Scikit-learn 1.4.2, and Matplotlib 3.8.4. The code of all experiments is available at
https:/ /github.com/InfoLab-SKKU /DES4Depression (accessed on 25 September 2024) and
data are available at https:/ /doi.org/10.3886/ICPSR20541.v10 (accessed on 25 April 2024).

4.1. Performance Evaluation Metrics

To assess the performance of the models for the detection and severity prediction layers,
a comprehensive evaluation using various performance metrics was conducted, including
accuracy, precision, recall, F1-score, and AUC. For regression models, metrics include
RMSE, MAE (Mean Absolute Error), and R? (R-squared) to evaluate regression models.

4.2. Experimental Roadmap for the Detection and Severity Prediction Layers

In both the detection and severity prediction layers, three sublayers were implemented
sequentially: classical ML, followed by static ensemble ML, and then dynamic ensemble
models. These sublayers were applied in succession, with the best-performing models from
each preceding sublayer used for feature selection in the following layer. Initially, classical
ML models were employed, utilizing the top 200 features identified through correlation
analysis. The most optimal classical ML model was then selected for feature selection for the
static ensemble layer, narrowing down to the top 150 features. Subsequently, the best static
ensemble model was used to identify the top 50 features of the dynamic ensemble layer. A
list of all classical ML models, static ensemble models, and dynamic ensemble models can
be found in Section 3.5. The sublayers of the classical models and static ensemble models
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underwent three testing conditions: without feature selection and without hyperparameter
optimization, with feature selection but without hyperparameter optimization, and with
both feature selection and hyperparameter optimization. The latter condition was used to
determine the “best model” for feature selection in the subsequent layer. For the dynamic
ensemble sublayer, only one testing condition was implemented, where all base classifiers
were optimized, and feature selection was made. All base classifiers utilized within the
dynamic ensemble sublayer correspond to the classifiers implemented in both the classical
and static ensemble approaches. These base classifiers have undergone hyperparameter
optimization to ensure optimal performance when incorporated into the dynamic ensemble
sublayer. For the purpose of a fair comparison, the dynamic ensemble methods themselves
are employed with default parameter settings. Hyperparameter optimization of the base
classifiers was based on Bayesian optimization (Bayes search). It is important to note
that hyperparameter optimization was performed subsequent to the feature selection step.
The search spaces for optimizing hyperparameters of classical models can be found in
Supplementary Listing S1, while the search spaces for optimizing hyperparameters of
static ensemble models can be found in Supplementary Listing S2. Ultimately, the model
demonstrating the highest performance was selected and further enhanced with XAl Note
that it is challenging to obtain feature importance with DES methods. Hence, the best
classical ML or static ensemble model will be used to generate XAl

4.3. Experimental Roadmap for the Scale Prediction Layer

A static ensemble approach will be employed utilizing several static ensemble regres-
sors, a list of which is stated in Section 3.6. The study will be conducted in two phases:
initially without feature selection and hyperparameter optimization, and subsequently
with the implementation of both feature selection and hyperparameter optimization. The
best model was then used in XAI Feature selection was completed by the best model from
the detection layer, while hyperparameter optimization was completed through Bayes
search. The search spaces for optimizing hyperparameters of regressors can be found in
Supplementary Listing S3.

4.4. Experimental Roadmap for XAl

Model explainability is conducted separately for all three layers. For the two primary
layers—detection and severity prediction—both global explainability and local-instance ex-
plainability methods are employed. In the case of global explainability, the best-performing
model from either the classical or static ensemble models is selected to generate SHAP
summary plots and SHAP beeswarm plots. These visualizations provide insights into
feature importance, illustrating how individual features contribute to the presence of de-
pression in the detection layer or to the severity of depression in the severity prediction
layer. Additionally, a DT visualization is created to demonstrate the decision-making
process of the DT model. For local-instance explainability, waterfall plots are utilized to
illustrate the model’s decision-making process for individual cases. In the detection layer,
waterfall plots are generated to compare normal versus depressed individuals, while in
the severity prediction layer, they compare mild versus moderate-severe depression cases.
Furthermore, several sequential decision-making paths from a DT will be shown for both
layers to see how a DT makes its decision when predicting the presence of depression or
the severity of depression in an individual. In the confirmation layer (regression), only
local-instance explainability is applied, specifically through the use of waterfall plots. These
plots are generated for two extreme cases: a PHQ-9 score of 0 (indicating no depression)
and a PHQ-9 score of 27 (indicating severe depression), providing detailed insights into the
factors influencing the lowest and highest possible depression scores.
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5. Results and Discussion
5.1. Results of Depression Detection

This section provides a comprehensive analysis of the outcomes derived from the
detection layer experiments (i.e., normal individuals against depressed individuals). The
discussion is structured into three subsections: classical ML models, static ensemble models,
and dynamic ensemble models. The test results are collected and reported for all models.
A 10-fold cross-validation is used for models’ optimization to ensure the robustness and
stability of the results, and a holdout test set is employed to measure the generalization
performance. The test results are presented as mean =+ standard deviation to accurately
convey the variability in the performance of the models. Accuracy and F1-score are utilized
as primary metrics for the evaluation, providing a consistent baseline for comparison across
different models. The findings of these evaluations not only highlight the effectiveness
of each model but also inform the selection of features and optimization strategies for
subsequent layers in the experimental roadmap.

5.1.1. Classical ML Models

The performance of classical ML models is evaluated under three distinct condi-
tions: without feature selection and hyperparameter optimization (refer to Supplementary
Table S1), with feature selection only (refer to Supplementary Table S2), and with both
feature selection and hyperparameter optimization (refer to Table 2). The feature selection
process for this layer utilizes the top 200 features identified via the correlation operation. As
anticipated, the performance of all classical ML models improved following the implemen-
tation of feature selection and hyperparameter optimization. The SVC model achieved the
highest accuracy and Fl-score (i.e., 81.47% 4= 1.25% and 81.45% = 1.24%, respectively).

Table 2. Classical classifier results with feature selection and hyperparameter optimization (detec-
tion layer).

Model Accuracy Precision Recall F1-Score

DT 0.7750 £ 0.0162 0.7774 £ 0.0154 0.7750 £ 0.0162 0.7745 £ 0.0166
LR 0.8126 £ 0.0142 0.8140 £ 0.0145 0.8126 £ 0.0142 0.8124 £ 0.0142
NB 0.7294 £ 0.0187 0.7325 £ 0.0190 0.7294 £ 0.0187 0.7286 + 0.0187
KN 0.6860 £ 0.0146 0.7363 £ 0.0157 0.6860 £ 0.0146 0.6683 £ 0.0173
MLP 0.7995 £+ 0.0171 0.8002 £ 0.0168 0.7995 £ 0.0171 0.7993 £ 0.0172
SvC 0.8147 £ 0.0125 0.8158 + 0.0127 0.8147 + 0.0125 0.8145 + 0.0124

The bold row shows the best performing model. Abbreviations: Decision Tree (DT); Logistic Regression (LR);
Naive Bayes (NB); K-Neighbors (KN); Multilayer Perceptron (MLP); Support Vector Classification (SVC).

Figure 4a provides a summary of this stage, illustrating the performance of classical
ML models with and without the application of feature selection and hyperparameter opti-
mization steps. As observed, the performance of all models, except for DT, improves after
feature selection and further increases following hyperparameter optimization (including
DT). This demonstrates the significance of these steps in optimizing model performance.
Figure 4b shows the Friedman—Nemenyi test, revealing that SVC, LR, and MLP are sta-
tistically similar in performance, while these models are distinct from KNN, NB, and DT.
Lastly, Figure 4c depicts the Receiver Operating Characteristic (ROC) curves along with
their respective AUC scores, further evidencing the classifiers’ effectiveness in differentiat-
ing classes.
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5.1.2. Static Ensemble Models

In this section, we evaluate the performance of static ensemble models. Similar to the
previous section, we assessed the performance of static ensemble ML models under three
different conditions: without feature selection and hyperparameter optimization (refer to
Supplementary Table S3), with feature selection only (refer to Supplementary Table S4),
and with both feature selection and hyperparameter optimization (refer to Table 3). For
feature selection, the top 150 features were identified using LR, as it is the second-best
model evaluated in the previous classic ML models experiment. This choice is due to
the difficulty in obtaining feature importance scores for SVC, which does not inherently
provide a straightforward method for feature importance extraction.

Table 3. Static ensemble classifier results with feature selection and hyperparameter optimization
(detection layer).

Model Accuracy Precision Recall F1-Score

RF 0.8288 +0.0111 0.8290 £ 0.0110 0.8288 £0.0111 0.8287 £ 0.0111
XGB 0.8698 £ 0.0100 0.8700 £ 0.0099 0.8698 £ 0.0100 0.8697 £ 0.0100
GB 0.8688 £ 0.0130 0.8692 £ 0.0130 0.8688 £ 0.0130 0.8688 £+ 0.0130
AB 0.8419 £0.0124 0.8424 £ 0.0123 0.8419 £0.0124 0.8419 £ 0.0124
CB 0.8660 £ 0.0099 0.8665 £ 0.0098 0.8660 £ 0.0099 0.8659 =+ 0.0099
LGBM 0.8679 £ 0.0155 0.8683 £ 0.0153 0.8679 £ 0.0155 0.8678 £ 0.0156
Vot 0.8708 £ 0.0106 0.8712 £ 0.0105 0.8708 £ 0.0106 0.8708 £ 0.0106

Abbreviations: Random Forest (RF); XGBoost (XGB); Gradient Boosting (GB); AdaBoost (AB); CatBoost (CB) ;
LightGBM (LGBM); Voting Classifier (Vot).

The most effective static ensemble model identified was the Vot classifier, which
achieved an accuracy and F1-score of 87.08% =+ 1.06% and 87.08% = 1.06%, respectively.
The Vot classifier excels because it leverages the strengths of multiple base models, combin-
ing their predictions to produce a more robust and accurate final decision. Moreover, this
represents a significant improvement over the SVC model. Figure 5a provides a compara-
tive analysis of model performance with and without the application of feature selection
and hyperparameter optimization. It should be noted that some models experienced a
decrease in accuracy following feature selection (without hyperparameter optimization),
suggesting that a larger feature set may sometimes be beneficial. However, after optimizing
hyperparameters, all models showed an increase in accuracy, indicating that optimizing
hyperparameters for the new feature set is crucial for improving performance. Further-
more, all static ensemble models outperformed all classical ML models, highlighting the
superiority of static ensemble methods over classical approaches. Figure 5b shows that
Vot, GB, XGB, LGBM, and CB exhibit similar statistical performance, distinct from AB and
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RF, with RF being the lowest-ranked model. Finally, Figure 5c depicts the ROC curves
alongside their corresponding AUC scores.
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Figure 5. Performance comparison of different static ensemble classifiers at the detection layer.
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(a) Performance of static ensemble classifiers with and without feature selection and optimization
(detection layer). (b) Comparison of static ensemble classifiers based on the Friedman test (detection
layer). (c) AUC scores for static ensemble classifiers with feature selection and hyperparameter
optimization (detection layer).

Comparison of Classic and Static Ensemble Classifiers

We present a comparison of classical and static ensemble models based on their
accuracy, as illustrated in Figure 6a. It is noteworthy that all static ensemble models outper-
formed the classical ML models. The KNN model demonstrated the poorest performance
among all models. Conversely, several static ensemble models, including Vot, LGBM, CB,
GB, and XGB, exhibited similar high performance, with Vot being the highest-performing
one. These results are further evidenced by the Friedman-Nemenyi test results illustrated
in Figure 6b, which highlight Vot as the top performer with an average rank of 2.65, while
KNN ranks the lowest with an average rank of 13.00.
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Figure 6. Performance comparison between different classic and static classifiers at the detection layer.
(a) Performance metric comparison between classic and static ensemble classifiers (detection layer).
(b) Comparison of classic and static ensemble classifiers based on the Friedman test (detection layer).

5.1.3. Dynamic Ensemble ML Models

In this section, we explore the performance of dynamic ensemble models toward
the detection layer. It is worth mentioning that, in this evaluation, only 50 features were
utilized, selected using XGB due to its superior performance in feature selection, except for
the Vot classifier, for which feature importance could not be determined easily.

The construction of dynamic ensembles requires the selection of the optimal number
and types of base classifiers. In particular, the list of base classifiers remains consistent with
those optimized in previous sections. In this section, the performance of these ensembles
was evaluated using the top three, four, five, and all six base classifiers, evaluated using
twelve DES techniques.

Results of DES with a Pool of Classical Classifiers

With a pool of optimized classical ML classifiers, the use of the six base classifiers
results in the highest precision. The best performance was achieved with the FIRE-KNOP
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method, which achieved an accuracy and F1-Score of 83.28% =+ 1.60% and 83.27% =+ 1.60%
respectively. Detailed metrics for all DES techniques employing six classical classifiers are
presented in Table 4. The enhanced performance of FIRE-KNOP can be attributed to the
incorporation of the FIRE capability, which implements dynamic frienemy pruning within
the KNOP algorithm [56]. Figure 7a illustrates the performance of the FIRE-KNOP model
with varying numbers of base classifiers. The results indicate that the performance metrics
remain consistent for configurations with 4, 5, and 6 base classifiers, while a slight decline
in performance is observed when the number of base classifiers is reduced to 3. Figure 7b
presents the results of the Friedman—Nemenyi test, demonstrating that many classifiers
are statistically similar in terms of performance. Notably, FIRE-KNOP emerges as the
best-performing model, while FIRE-DESKNN is identified as the worst-performing model
in the comparison. Lastly, Figure 7c displays the ROC curve along with the respective AUC
scores. Details on the performance of DES models with different numbers of base classical
classifiers can be seen in Supplementary Table S5.

Table 4. DES model results with all six base classical classifiers (detection layer).

Model Accuracy Precision Recall F1-Score

KNORAE 0.8202 £0.0167  0.8207 +0.0166 ~ 0.8202 £0.0167  0.8201 & 0.0167
KNORAU 0.8285 £+ 0.0112 0.8301 £0.0114  0.8285+0.0112  0.8283 £+ 0.0112
KNOP 0.8313 £+ 0.0186 0.8318 £0.0184  0.8313+0.0186  0.8312 £ 0.0186
DESMI 0.8237 £0.0171 0.8254£0.0158  0.8237 £0.0171 0.8234 £0.0174
METADES 0.8290 £ 0.0199 0.8295+0.0196  0.8290+0.0199  0.8290 £ 0.0200
DESKNN 0.8207 £0.0178 0.8231 £ 0.0161 0.8207 £0.0178  0.8203 £ 0.0181
DESP 0.8259 £0.0101 0.8267 £ 0.0103 0.8259 £ 0.0101 0.8258 £ 0.0101
FIRE-KNORA-U  0.8243 £+ 0.0136 0.8249 £0.0137  0.8243+0.0136  0.8242 £ 0.0136
FIRE-KNORA-E 0.8191 £0.0171 0.8195+£0.0166  0.8191 £0.0171 0.8190 £ 0.0172
FIRE-METADES  0.8267 £ 0.0199 0.8274 £ 0.0193 0.8267 £0.0199  0.8266 + 0.0201
FIRE-DESKNN 0.8176 £ 0.0160 0.8207 £0.0142  0.8176 +0.0160  0.8171 £ 0.0163
FIRE-DESP 0.8223 £0.0107  0.8227 4+ 0.0105 0.8223 +£0.0107  0.8223 £+ 0.0108
FIRE-KNOP 0.8328 0.0160  0.8335 £ 0.0160  0.8328 = 0.0160  0.8327 £ 0.0160

(@) (b)

Figure 7. Performance comparison of different DES classifiers with classical classifiers at the detection
layer. (a) Comparison of FIRE-KNOP with classical classifiers pool with different numbers of base
classifiers (detection layer). (b) Comparison of DES classifiers with a pool of 6 classical classifiers
based on the Friedman test (detection layer). (c) AUC scores for DES classifiers with a pool of 6
classical classifiers (detection layer).

Results of DES with a Pool of Static Ensemble Models

We explored the potential to improve the performance of DES algorithms by using
static ensemble models as the classifier pool for DES models. This approach was motivated
by the superior performance of the static ensemble models observed in earlier experiments.

Our evaluation indicates that the optimal configuration consists of using five base
classifiers: XGB, GB, AB, CB, and LGBM. The most effective configuration involved us-
ing the FIRE-KNOP method with the five aforementioned base classifiers. This method
consistently demonstrated superior performance, mirroring the results observed with DES
using a pool of classical classifiers. Notably, the accuracies and Fl-scores achieved with this
configuration were significantly higher amongst all DES methods, reflecting the improved
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performance of using static ensemble models over classical models. Specifically, the FIRE-
KNOP method achieved an accuracy and F1-Score of 88.21% =+ 1.05% and 88.21% =+ 1.05%,
respectively. Detailed metrics for all DES models using five static classifiers can be found in
Table 5. Figure 8a illustrates the performance of FIRE-KNOP with varying numbers of base
classifiers. In this case, using three, four, or five classifiers resulted in similar performance
metrics, while using six classifiers led to a decrease in performance. This contrasts with
the results for DES using classical classifiers, suggesting that the number of classifiers may
be less important than the selection of the classifiers themselves. Figure 8b presents the
Friedman-Nemenyi test results, with FIRE-KNOP again emerging as the best-performing
model and DESKNN as the worst, mirroring the trends observed with DES using classical
classifiers. Finally, Figure 8c shows the ROC curve with the respective AUC scores. Details
on the performance of DES models with a different number of base static classifiers can be

seen in Supplementary Table S6.

Table 5. DES model results with five base static classifiers (detection layer).

Model Accuracy Precision Recall F1-Score
KNORAE 0.8790 +£0.0103  0.879440.0101  0.8790 £0.0103  0.8790 £ 0.0103
KNORAU 0.878540.0102  0.87894+0.0101  0.8785+0.0102  0.8785 £ 0.0102
KNOP 0.8804 +0.0110 0.8807 4= 0.0109 0.8804 +0.0110 0.8803 +0.0110
DESMI 0.8751 £ 0.0104 0.8760 + 0.0102 0.8751 £ 0.0104 0.8751 £ 0.0104
METADES 0.8810 £ 0.0112 0.8814 + 0.0110 0.8810 = 0.0112 0.8810 £ 0.0112
DESKNN 0.8747 £ 0.0095 0.8756 + 0.0091 0.8747 = 0.0095 0.8747 £ 0.0096
DESP 0.8785+0.0102  0.8789+0.0101  0.8785+0.0102  0.8785 £ 0.0102
FIRE-KNORA-U  0.8789+0.0109  0.87934+0.0107  0.8789 £0.0109  0.8789 £ 0.0109
FIRE-KNORA-E 0.8790 + 0.0106 0.8794 1 0.0104 0.8790 = 0.0106 0.8790 + 0.0106
FIRE-METADES  0.8801+0.0110  0.8805+0.0108  0.8801 £0.0110  0.8801 £ 0.0110
FIRE-DESKNN 0.8750 +0.0097  0.8759 +0.0093  0.8750 £0.0097  0.8749 =+ 0.0098
FIRE-DESP 0.8790 £ 0.0110 0.8795 4 0.0108 0.8790 = 0.0110 0.8790 £ 0.0110
FIRE-KNOP 0.8821+0.0105  0.8825+0.0104 0.8821+0.0105  0.8821 £ 0.0105
o —
ol MR repgen— T E—mps 2
() (b) ()

Figure 8. Performance comparison of DES classifiers with a static ensemble classifiers pool at the
detection layer. (a) Comparison of FIRE-KNOP with a static ensemble classifiers pool with a different
number of base classifiers (detection layer). (b) Comparison of DES classifiers with a pool of 5 static
ensemble classifiers based on the Friedman test (detection layer). (¢) AUC scores for DES classifiers
with a pool of 5 static ensemble classifiers (detection layer).

Results of DES with a Mixed Pool of Classical and Static Ensemble Classifiers

A mixed pool of optimized classical and static ensemble classifiers was used to op-
timize the performance of DES models further. The aim was to enhance performance
by leveraging the diversity offered by a combined pool. Various pool sizes were tested,
ranging from four to ten base classifiers. The best performance across all experiments
was achieved with a combination of three static ensemble classifiers and one classical
classifier (XGB, CB, LGBM, SVC). Based on the optimal 3/1 combination of static and
classical classifiers, we evaluated the performance of 12 different DES techniques. Con-
sistently, the FIRE-KNOP method emerged as the best performer, achieving an accuracy
and F1-Score of 88.33% =+ 0.96% and 88.33% =+ 0.96%, respectively. Additionally, the best-
performing model exhibits the lowest standard deviation, indicating its greater stability
and consistency in comparison to the other models. This result not only highlights the
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effectiveness of FIRE-KNOP but also demonstrates its stability, as evidenced by the lowest
standard deviation compared to other DES methods for all metrics. Detailed metrics for
all DES techniques using this configuration can be found in Table 6. Figure 9a illustrates
the performance of FIRE-KNOP with varying numbers of base classifiers, demonstrating
consistent metrics across configurations ranging from 3 to 10 base classifiers. This contrasts
with the conclusions drawn from previous experimental stages, where the number of
base classifiers did not significantly impact the performance of DES models, suggesting
the potential insignificance of classifier quantity in this context. Figure 9b displays the
Friedman-Nemenyi test, once again demonstrating that FIRE-KNOP is the best-performing
model. However, DESMI is identified as the worst-performing model, differing from
previous trends. Finally, Figure 9c displays the ROC curve with the respective AUC scores.
Details on the performance of DES models with different numbers of base mixed classifiers
can be seen in Supplementary Table S7.

Table 6. DES model results with a pool of four mixed classifiers (detection layer).

Model Accuracy Precision Recall F1-Score

KNORAE 0.8812 £ 0.0101 0.8817 £ 0.0100 0.8812 + 0.0101 0.8811 £+ 0.0101
KNORAU 0.8819+0.0101  0.8824 £0.0100  0.8819+£0.0101  0.8818 & 0.0101
KNOP 0.8817£0.0101  0.8821+0.0099  0.8817£0.0101  0.8817 4 0.0101
DESMI 0.8187 £ 0.0110 0.8206 + 0.0111 0.8187 £ 0.0110 0.8184 +0.0110
METADES 0.8813+0.0118  0.8818 £0.0116  0.8813 £0.0118  0.8813 +0.0118
DESKNN 0.8695+0.0133  0.8709 £0.0126  0.8695£0.0133  0.8694 4 0.0133
DESP 0.8790 £ 0.0106 0.8796 + 0.0104 0.8790 £ 0.0106 0.8790 £ 0.0107
FIRE-KNORA-U 0.8817 £+ 0.0109 0.8822 + 0.0107 0.8817 £ 0.0109 0.8817 £ 0.0109
FIRE-KNORA-E  0.8809+0.0102  0.8814 £0.0101  0.8809 £0.0102  0.8809 % 0.0102
FIRE-METADES 0.8817 £ 0.0120 0.8822 +0.0118 0.8817 £ 0.0120 0.8817 +0.0120
FIRE-DESKNN 0.8711 +£0.0123 0.8722 +0.0118 0.8711 £ 0.0123 0.8710 +0.0124
FIRE-DESP 0.8793 £ 0.0115 0.8798 £ 0.0112 0.8793 £ 0.0115 0.8793 £ 0.0115
FIRE-KNOP 0.8833 +0.0096  0.8838 £0.0095  0.8833 +0.0096  0.8833 + 0.0096

(@) (b)

Figure 9. Performance comparison of DES classifiers with a mixed classifiers pool at the detection
layer. (a) Comparison of FIRE-KNOP with a mixed classifiers pool with a different number of base
classifiers (detection layer). (b) Comparison of DES classifiers with a pool of 4 mixed classifiers based
on the Friedman test (detection layer). (c¢) AUC scores for DES classifiers with a pool of 4 mixed
ensemble classifiers (detection layer).

5.2. Results of Depression Severity Prediction

In this section, we delve into the severity prediction layer, specifically focusing on
differentiating between mild and moderate-severe depression. This task mirrors the
preceding detection section in terms of methodology, involving the use of classical ML
models, static ensemble models, and dynamic ensemble models. A 10-fold holdout testing
technique was employed to ensure robust validation and accuracy, the F1-Score was chosen
as the primary metric for evaluation, and Bayes search was utilized for hyperparameter
tuning. All experimental procedures were conducted in alignment with those used in the
detection layer, ensuring methodological consistency and reliability.



Diagnostics 2024, 14, 2385

24 of 41

5.2.1. Classical ML Models

The evaluation of the severity prediction layer follows the same process as the detection
layer, using classical ML models under three conditions: without feature selection and
hyperparameter optimization (refer to Supplementary Table S8), with feature selection only
(refer to Supplementary Table S9), and with both feature selection and hyperparameter
optimization (refer to Table 7). The feature selection process used the top 200 features
identified by correlation, and the hyperparameters were subsequently optimized. The SVC
remains the most effective model for the classical section in the severity prediction layer,
achieving an accuracy and F1-Score of 79.26% =+ 1.99% and 79.16% = 2.04%, respectively.
This performance is comparable to that of the detection task, although the accuracy is
marginally lower by approximately 2%. This slight decrease in accuracy suggests that
severity prediction might be more challenging than detection. Figure 10a provides an
overview of this stage, illustrating the performance of ML models with and without the
application of feature selection and hyperparameter optimization. As demonstrated, all
models experienced a notable improvement in performance following feature selection,
with an additional increase observed after hyperparameter optimization. The Friedman-—
Nemenyi test is shown in Figure 10b, indicating that LR, SVC, and MLP exhibit similar
performance, which is statistically distinct from that of DT, KNN, and NB. This observation
mirrors the results of the detection layer, potentially suggesting a consistent trend across
these models. The ROC curves, along with the models’ respective AUC scores, are shown
in Figure 10c.

Table 7. Classical classifier results with feature selection and hyperparameter optimization (severity
prediction layer).

Model Accuracy Precision Recall F1-Score

DT 0.7252 +0.0235 0.7347 +0.0228 0.7252 £ 0.0235 0.7222 +0.0245
LR 0.7919 £+ 0.0187 0.7955 £ 0.0184 0.7919 4 0.0187 0.7913 £ 0.0189
NB 0.7029 4+ 0.0283 0.7077 4 0.0282 0.7029 4 0.0283 0.7011 4 0.0289
KN 0.7048 £ 0.0146 0.7689 £ 0.0152 0.7048 +0.0146 0.6860 £ 0.0172
MLP 0.7768 £ 0.0171 0.7844 £ 0.0173 0.7768 +0.0171 0.7753 £0.0173
svC 0.7926 £+ 0.0199 0.7980 = 0.0182 0.7926 £+ 0.0199 0.7916 £ 0.0204
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Figure 10. Performance comparison of different classical classifiers at the severity prediction layer.
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(a) Performance of classical classifiers with and without optimization (severity prediction layer).
(b) Comparison of classical classifiers based on the Friedman test (severity prediction layer). (c) AUC
scores for classical classifiers with feature selection and hyperparameter optimization (severity
prediction layer).

5.2.2. Static Ensemble ML Models

In this section, the performance of static ensemble models was evaluated for the
depression severity prediction task, analogous to the depression detection discussed above.
We evaluated the performance of static ML models under three conditions: without feature
selection and hyperparameter optimization (refer to Supplementary Table S10), with feature
selection only (refer to Supplementary Table S11), and with both feature selection and
hyperparameter optimization (refer to Table 8). Similarly to the depression detection layer,
the top 150 features were identified using LR.
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Table 8. Static ensemble classifier results with feature selection and hyperparameter optimization
(severity prediction layer).

Model Accuracy Precision Recall F1-Score

RF 0.8110 £ 0.0161 0.8332 £ 0.0141 0.8110 +0.0161 0.8077 £0.0171
XGB 0.8271 £+ 0.0187 0.8393 £ 0.0163 0.8271 £ 0.0187 0.8255 £ 0.0194
GB 0.8242 4+ 0.0203 0.8377 +0.0167 0.8242 4 0.0203 0.8223 4 0.0212
AB 0.8284 £+ 0.0196 0.8367 £ 0.0156 0.8284 1 0.0196 0.8272 £ 0.0203
CB 0.8274 £ 0.0211 0.8393 £ 0.0181 0.8274 £ 0.0211 0.8258 £ 0.0219
LGBM 0.8235 4+ 0.0218 0.8386 4 0.0174 0.8235 4 0.0218 0.8214 4 0.0230
Vot 0.8294 £+ 0.0178 0.8431 + 0.0158 0.8294 +0.0178 0.8276 £ 0.0184

Vot, once again, demonstrates superior performance, achieving the highest accuracy
and F1-Score of 82.94% =+ 1.78% and 82.76% =+ 1.84%, respectively. A notable difference in
this analysis is that AB emerged as the second highest performing model instead of XGB.
In such case, AB will be utilized as the feature selector model for the DES layers, as it is
difficult to obtain feature importance with the Vot model.

Figure 11a provides a comparative analysis of model performance with and without
the application of feature selection and hyperparameter optimization. It is noteworthy
that some models experienced a decrease in accuracy following feature selection (without
hyperparameter optimization), suggesting that a larger feature set may sometimes be
beneficial. However, after hyperparameter optimization, all models exhibited an increase
in accuracy, indicating that optimizing hyperparameters for the new feature set is crucial
for enhancing performance. Furthermore, all static ensemble models outperformed the
classical ML models, as was similarly observed in the detection layer. This further reinforces
the superiority of static ensemble models over classical ML approaches, highlighting their
enhanced performance and effectiveness. Figure 11b indicates similar performance across
all models, with the exception of RE, which emerges as the lowest-ranked model. This
result is consistent with observations from the detection layer, further emphasizing this
model’s comparatively weaker performance. Lastly, Figure 11c illustrates the ROC curves
and their respective AUC scores.
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Figure 11. Performance comparison of different static ensemble classifiers at the severity prediction
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layer. (a) Performance of static ensemble classifiers with and without feature selection and optimiza-
tion (severity prediction layer). (b) Comparison of static ensemble classifiers based on the Friedman
test (severity prediction layer). (¢) AUC scores for static ensemble classifiers with feature selection
and hyperparameter optimization (severity prediction layer).

Comparison of Classic and Static Ensemble Classifiers

This section presents a comparison of classical and static models based on their
accuracy, as illustrated in Figure 12a, paralleling the analysis performed for the detection
layer but with a lower average accuracy among models. This discrepancy signifies the
increased difficulty in predicting the severity compared to detection. In particular, all
static ensemble models outperformed the classical models. Specifically, the NB model
demonstrated the poorest performance among the classical models in this context, while
Vot still achieved the highest performance. These results are further supported by the
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Friedman—Nemenyi test results in Figure 12b, which highlights Vot as the top performer
with an average rank of 3.35, while NB ranks the lowest with an average rank of 12.35.
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Figure 12. Performance comparison between different classic and static classifiers at the severity
prediction layer. (a) Performance metric comparison between classic and static ensemble classifiers
(severity prediction layer). (b) Comparison of classic and static ensemble classifiers based on the
Friedman test (severity prediction layer).

5.2.3. Dynamic Ensemble ML Models

In this section, we examine the performance of dynamic ensemble models in terms of
the severity prediction layer. Only 50 features were utilized, selected using AB due to its
superior performance in feature selection, except for the Vot classifier, for which feature
importance could not be determined easily.

Similarly to the detection layer, the performance of these ensembles was evaluated
using the top three, four, five, and all six base classifiers, evaluated using twelve
DES techniques.

Results of DES with a Pool of Classical Classifiers

Utilizing five base classifiers (DT, LR, KNN, MLP, and SVC) results in the highest
performance. The best performance was achieved with the KNORAU method, achiev-
ing an accuracy and F1-Score of 79.26% + 1.73% and 79.13% =+ 1.77%, respectively. The
DESP method yielded similarly strong results, though with a slightly higher standard
deviation, indicating more variability in its performance. Detailed metrics for all DES
techniques employing five classical classifiers are presented in Table 9. Figure 13a illus-
trates the performance of KNORAU with varying numbers of base classifiers, showing
similar performances across all scenarios. Figure 13b displays the Friedman-Nemenyi
test, indicating KNORAU as the best model and FIRE-DESKNN as the worst. Lastly,
Figure 13c displays the ROC curve along with the respective AUC scores. Details on the
performance of DES models with different numbers of base classical classifiers can be seen
in Supplementary Table S12.

Table 9. DES model results with five base classical classifiers (severity prediction layer).

Model Accuracy Precision Recall F1-Score

KNORAE 0.7816 + 0.0187 0.7941 £+ 0.0187 0.7816 + 0.0187 0.7792 £ 0.0193
KNORAU 0.7926 + 0.0173 0.7995 + 0.0165 0.7926 + 0.0173 0.7913 £ 0.0177
KNOP 0.7819 £ 0.0218 0.7907 £ 0.0193 0.7819 £ 0.0218 0.7802 + 0.0225
DESMI 0.7658 + 0.0210 0.7903 £ 0.0171 0.7658 £ 0.0210 0.7606 £ 0.0225
METADES 0.7806 £+ 0.0211 0.7903 £+ 0.0193 0.7806 £+ 0.0211 0.7787 £ 0.0217
DESKNN 0.7658 + 0.0210 0.7903 £ 0.0171 0.7658 + 0.0210 0.7606 + 0.0225
DESP 0.7926 + 0.0181 0.7999 £ 0.0167 0.7926 £ 0.0181 0.7912 £ 0.0187
FIRE-KNORA-U 0.7897 + 0.0181 0.7976 + 0.0183 0.7897 £ 0.0181 0.7883 £ 0.0183
FIRE-KNORA-E 0.7784 + 0.0190 0.7909 £ 0.0183 0.7784 £ 0.0190 0.7759 £ 0.0197
FIRE-METADES 0.7790 £ 0.0200 0.7887 £ 0.0184 0.7790 + 0.0200 0.7771 £ 0.0206
FIRE-DESKNN 0.7632 £+ 0.0206 0.7887 £+ 0.0155 0.7632 £ 0.0206 0.7577 £ 0.0222
FIRE-DESP 0.7874 + 0.0161 0.7961 £ 0.0161 0.7874 £ 0.0161 0.7858 + 0.0164
FIRE-KNOP 0.7858 £ 0.0181 0.7943 + 0.0168 0.7858 £ 0.0181 0.7842 +0.0187
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Figure 13. Performance comparison of different DES classifiers with classical classifiers at the severity
prediction layer. (a) Comparison of KNORAU with classical classifiers pool with different numbers of
base classifiers (severity prediction layer). (b) Comparison of DES classifiers with a pool of 5 classical
classifiers based on the Friedman test (severity prediction layer). (c) AUC scores for DES classifiers
with a pool of 5 classical classifiers (severity prediction layer).

Results of DES with a Pool of Static Ensemble Models

Given that static ensemble classifiers have demonstrated superior performance com-
pared to classical classifiers, analogous to their efficacy in the detection layer, we also
explored the application of static ensemble methods within the DES layer. This approach
mirrors the methodology employed in the detection layer, aiming to leverage the strengths
of static ensembles for enhanced performance in the DES layer.

Similarly to the detection layer, our evaluation indicates that the optimal configuration
consists of using five base classifiers: XGB, GB, AB, CB, and LGBM. The most effective
configuration involved using the FIRE-KNOP method with the five aforementioned base
classifiers. This parallels the findings in the depression detection layer, further highlighting
the exceptional performance of the FIRE-KNOP method. Specifically, the FIRE-KNOP
method achieved an accuracy and F1-Score of 83.32% =+ 1.83% and 83.18% =+ 1.86%, re-
spectively. Detailed metrics for all DES models using five static classifiers can be found in
Table 10. Figure 14a displays the performance of FIRE-KNOP with varying numbers of
base classifiers, revealing similar performance across all configurations. When considered
alongside the results from the previous DES with classical ML pool stage, this suggests that
the number of base classifiers selected may have no statistically significant impact on the
performance of the models, unlike in the detection layer’s DES with classical pool and DES
with static pool stages. Figure 14b displays the Friedman—-Nemenyi test, indicating FIRE-
KNOP as the best model and FIRE-DESKNN as the worst. Lastly, Figure 14c shows the
ROC curve with the respective AUC scores. Details on the performance of DES models with
different numbers of base static classifiers can be seen in Supplementary File Table S13.

Table 10. DES model results with five base static classifiers (severity prediction layer).

Model Accuracy Precision Recall F1-Score

KNORAE 0.8319 £ 0.0185 0.8445 £ 0.0180 0.8319 +£0.0185 0.8304 + 0.0189
KNORAU 0.8329 +0.0186 0.8446 + 0.0181 0.8329 +0.0186 0.8314 £ 0.0189
KNOP 0.8329 £0.0184 0.8448 + 0.0178 0.8329 +0.0184 0.8314 + 0.0187
DESMI 0.8177 £ 0.0166 0.8391 £ 0.0160 0.8177 £ 0.0166 0.8148 +0.0173
METADES 0.8277 £ 0.0174 0.8431 +0.0167 0.8277 +£0.0174 0.8258 +0.0179
DESKNN 0.8177 £0.0166  0.8391+£0.0160  0.8177 +0.0166  0.8148 £+ 0.0173
DESP 0.8329 £ 0.0186 0.8446 £+ 0.0181 0.8329 +0.0186 0.8314 +0.0189
FIRE-KNORA-U 0.8326 +0.0189 0.8443 + 0.0184 0.8326 + 0.0189 0.8311 £ 0.0193
FIRE-KNORA-E  0.8319+0.0188  0.8447 +0.0186  0.8319 £0.0188  0.8303 £ 0.0192
FIRE-METADES 0.8281 +£0.0172 0.8436 £+ 0.0164 0.8281 +£0.0172 0.8261 +£0.0177
FIRE-DESKNN 0.8177 £ 0.0166 0.8391 + 0.0160 0.8177 £ 0.0166 0.8148 £ 0.0173
FIRE-DESP 0.8326 £0.0189  0.84434+0.0184  0.8326 £0.0189  0.8311 £ 0.0193
FIRE-KNOP 0.8332 +0.0183 0.8450 +0.0177  0.8332 £ 0.0183 0.8318 £ 0.0186
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Figure 14. Performance comparison of DES classifiers with static ensemble classifiers pool at the
severity prediction layer. (a) Comparison of FIRE-KNOP with a static ensemble classifiers pool with a
different number of base classifiers (severity prediction layer). (b) Comparison of DES classifiers with
a pool of 5 static ensemble classifiers based on the Friedman test (severity prediction layer). (c) AUC
scores for DES classifiers with a pool of 5 static ensemble classifiers (severity prediction layer).

Results of DES with a Mixed Pool of Classical and Static Ensemble Models

Analogous to the detection layer, a mixed pool of optimized classical and static
ensemble classifiers was used to improve performance by leveraging the diversity offered
by a combined pool. Four to ten base classifiers were tested. The best performance across
all experiments was achieved with a combination of six static ensemble classifiers and
four classical classifiers (excluding NB and KNN). Consistently, the FIRE-KNOP method
emerged as the best performer, achieving an accuracy and F1-Score of 83.68% + 1.49% and
83.54% =+ 1.53%, respectively. This result not only highlights the effectiveness of FIRE-
KNOP but also demonstrates its stability, as evidenced by the lowest standard deviation
compared to other accuracies and all other results. Detailed metrics for all DES techniques
that use this configuration can be found in Table 11. Figure 15a illustrates the performance
of FIRE-KNOP with varying numbers of base classifiers, showing statistically similar
results across all configurations. This further reinforces the notion that the number of
base classifiers has no significant impact on model performance. Figure 15b displays the
Friedman-Nemenyi test, indicating FIRE-KNOP as the best model and DESP as the one
with the worst performance. Finally, Figure 15c displays the ROC curve with the models’
respective AUC scores. Details on the performance of DES models with different numbers
of base mixed classifiers can be seen in Supplementary Table S14. These findings underscore
the superior performance of the FIRE-KNOP method, which consistently outperforms other
DES techniques. The success of a mixed pool of classifiers suggests that incorporating
a diverse set of classifiers leads to enhanced model performance. This pattern of results
mirrors the observations in the detection layer, further affirming that mixed DES approaches
tend to yield better outcomes, with FIRE-KNOP as the best method.

Table 11. DES model results with a pool of ten mixed classifiers (severity prediction layer).

Model Accuracy Precision Recall F1-Score

KNORAE 0.8294 £0.0171 0.8425+0.0164  0.8294 +0.0171 0.8277 £0.0175
KNORAU 0.8310+£0.0194  0.8420+£0.0187  0.8310+0.0194  0.8296 £ 0.0198
KNOP 0.8348 £ 0.0130 0.8469 £0.0137  0.8348+0.0130  0.8334 £ 0.0132
DESMI 0.8255 £0.0184  0.8416 +0.0171 0.8255+£0.0184  0.8234 +0.0191
METADES 0.8332 £+ 0.0138 0.8456 £ 0.0139 0.8332 £0.0138  0.8317 £0.0142
DESKNN 0.8326 +0.0176 0.8439 £0.0168  0.8326+0.0176  0.8312 £ 0.0180
DESP 0.8258 £0.0174  0.8394 4+ 0.0163 0.8258 £0.0174  0.8240 £ 0.0180
FIRE-KNORA-U  0.8319 £ 0.0191 0.8433 £ 0.0179 0.8319 £ 0.0191 0.8305 £ 0.0196
FIRE-KNORA-E 0.8310 £ 0.0163 0.8443 £ 0.0159 0.8310 £0.0163  0.8293 +0.0167
FIRE-METADES  0.8335 £ 0.0128 0.8461 £0.0128  0.8335+0.0128  0.8320 & 0.0132
FIRE-DESKNN 0.8319 £ 0.0172 0.8434 £0.0166 ~ 0.8319+0.0172  0.8305 £ 0.0176
FIRE-DESP 0.8261 £0.0179 0.8395 £ 0.0165 0.8261 £0.0179  0.8244 £+ 0.0185
FIRE-KNOP 0.8368 0.0149  0.8479 £0.0137  0.8368 0.0149  0.8354 £ 0.0153
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Figure 15. Performance comparison of DES classifiers with a mixed classifiers pool at the severity
prediction layer. (a) Comparison of FIRE-KNOP with a mixed classifiers pool with a different number
of base classifiers (severity prediction layer). (b) Comparison of DES classifiers with a pool of ten
mixed classifiers based on the Friedman test (severity prediction layer). (c) AUC scores for DES
classifiers with a pool of ten mixed ensemble classifiers (severity prediction layer).

Summary of Best-Performing Models

Table 12 presents the best-performing models from all experiments conducted in both
the detection and severity prediction layers. In the detection section, the FIRE-KNOP model
with a mixed classifiers pool achieved the highest accuracy of 88.33% == 0.96% and an F1-
Score of 88.33% =+ 0.96%. In the severity prediction section, the FIRE-KNOP model with
a mixed classifiers pool produced the best metrics, with an accuracy of 83.68% =+ 1.49%
and an F1-Score of 83.54% =+ 1.53%. Hence, it can be concluded that the FIRE-KNOP
model, employing DES with a mix of classical and static classifiers, is the best-performing
approach across both layers, surpassing all other techniques. Furthermore, these findings
suggest that while the detection of depression is more straightforward, predicting the
severity—distinguishing between mild and moderate to severe cases—presents a greater
challenge, which is consistent with the literature on the difficulty of severity classification
in depression, particularly when using scales like the PHQ-9 [67].

Table 12. Comparison of the best models from all experiments in the detection layer and the severity
prediction layer.

Task Experiments Best Model Accuracy Precision Recall F1-Score
Classic svC 0.8147 £ 0.0125 0.8158 + 0.0127 0.8147 £ 0.0125 0.8145 + 0.0124
Static Vot 0.8708 £ 0.0106 0.8712 £ 0.0105 0.8708 £ 0.0106 0.8708 £ 0.0106
Detection DESw /Classic FIRE-KNOP 0.8328 £ 0.0160 0.8335 £ 0.0160 0.8328 £ 0.0160 0.8327 £ 0.0160
DESw /Static FIRE-KNOP 0.8821 £ 0.0105 0.8825 + 0.0104 0.8821 £ 0.0105 0.8821 £ 0.0105
DESw/Mix FIRE-KNOP 0.8833 =+ 0.0096 0.8838 + 0.0095 0.8833 =+ 0.0096 0.8833 + 0.0096
Classic SvVC 0.7926 £ 0.0199 0.7980 + 0.0182 0.7926 £ 0.0199 0.7916 + 0.0204
Static Vot 0.8294 + 0.0178 0.8431 + 0.0158 0.8294 + 0.0178 0.8276 + 0.0184
Severity DESw /Classic KNORAU 0.7926 £+ 0.0173 0.7995 £ 0.0165 0.7926 £+ 0.0173 0.7913 £ 0.0177
DESw /Static FIRE-KNOP 0.8332 £ 0.0183 0.8450 + 0.0177 0.8332 £ 0.0183 0.8318 £ 0.0186
DESw/Mix FIRE-KNOP 0.8368 + 0.0149 0.8479 + 0.0137 0.8368 =+ 0.0149 0.8354 + 0.0153

5.3. Results of PHQ-9 Depression Scale Prediction

Our experiments used the PHQ-9 scale to categorize both the presence and the severity
of depression. Individuals diagnosed with depression using this method are typically as-
sessed on a scale ranging from 0 to 27, with different score ranges corresponding to varying
levels of severity. Given that a substantial number of patients have already been classified
using this scale (in addition to the NSHAP dataset utilized in our study), regression analysis
may be a viable approach to predict precise scores. This method seeks to estimate the exact
scale score, where higher values indicate a greater severity of depression. More importantly,
this approach can complement the two primary layers: detection and severity prediction,
simultaneously determining the presence of depression and predicting its severity. This
section explores the results of the regression analysis, followed by a detailed discussion of
the findings.
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5.3.1. Static Ensemble Regression Models

In this study, we conducted two sets of experiments: one without feature selection
and hyperparameter optimization, and another that incorporates both feature selection
and hyperparameter optimization, as outlined in the experimental setup. For the latter set,
feature selection will be performed with XGB, and hyperparameter optimization will be
performed with a Bayesian search. These experiments were performed using seven static
ensemble regression models.

Results without Feature Selection and Hyperparameter Optimization

The average performance of the seven static ensemble models is presented in Table 13.
The results indicate that the CBR model achieved superior performance, with an RMSE of
2.3549 + 0.0500, an MAE of 1.8162 =+ 0.0436, and an R? value of 0.7374 + 0.0115.

Table 13. Static ensemble regression model results without feature selection and hyperparameter
optimization (scale prediction layer).

Model RMSE MAE R?

CBR 2.3549 -+ 0.0500 1.8162 + 0.0436 0.7374 + 0.0115
XGBR 2.5806 + 0.0628 1.9732 + 0.0483 0.6847 4+ 0.0147
LGBMR 2.4011 + 0.0499 1.8504 + 0.0387 0.7270 + 0.0128
GBR 2.3849 + 0.0619 1.8562 =+ 0.0553 0.7307 4+ 0.0127
RFR 2.4957 + 0.0690 1.9341 + 0.0615 0.7052 £+ 0.0116
ETR 2.5940 + 0.0622 2.0205 + 0.0603 0.6814 + 0.0128
ABR 2.7238 + 0.0788 2.2268 + 0.0702 0.6485 + 0.0212
Voting 2.3859 + 0.0685 1.8730 =+ 0.0649 0.7305 + 0.0122

Abbreviations: CatBoost Regressor (CBR); XGBoost Regressor (XGBR); LightGBM Regressor (LGBMR); Gradient
Boosting Regressor (GBR); Random Forest Regressor (RFR); Extra Trees Regressor (ETR); and AdaBoost Regressor
(ABR); Voting Regressor (Voting); root mean square error (RMSE); mean absolute error (MAE); R-squared (R?).

Results with Feature Selection and Hyperparameter Optimization

Upon optimizing the models using hyperparameter tuning and feature selection, we
observed overall performance improvements across all models, and the CBR once again
outperformed the others. The superior performance of CBR is evident in its performance
metrics, with an RMSE of 2.3256 + 0.0515, an MAE of 1.8099 + 0.0494, and an R? value of
0.7439 £ 0.0115. This can be attributed to the unique approach of CBR in combining rule-
based models with instance-based learning, which effectively captures complex patterns in
the data [68]. Additionally, CBR’s ability to provide detailed and interpretable predictions
makes it a robust choice for our regression tasks. Table 14 presents the performance metrics
of all models post-optimization. Figure 16a provides a graphical comparison of the perfor-
mance differences in static ensemble regressors using the RMSE metric, comparing results
without feature selection to those with feature selection and hyperparameter optimization.
As shown in the figure, all models improved after applying feature selection and hyperpa-
rameter optimization, highlighting the significance of these steps not only in classification
layers but also in regression layers to optimize model performance. Figure 16b illustrates
the results of the Friedman-Nemenyi test, revealing that CBR is the best-performing model,
while ABR was the worst-performing model.
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Table 14. Static ensemble regression model results with feature selection and hyperparameter
optimization (scale prediction layer).

Model RMSE MAE R?
CBR 2.3256 + 0.0515 1.8099 4+ 0.0494 0.7439 4+ 0.0115
XGBR 2.3773 +0.0586 1.8513 £ 0.0593 0.7324 +0.0121
LGBMR 2.3825 4+ 0.0509 1.8527 + 0.0456 0.7312 +0.0114
GBR 2.3725 4+ 0.0498 1.8557 £ 0.0530 0.7335 £ 0.0108
RFR 2.4823 4 0.0639 1.9236 + 0.0562 0.7084 £ 0.0106
ETR 2.5648 + 0.0648 1.9866 + 0.0604 0.6885 4+ 0.0141
ABR 2.6890 + 0.0673 2.1805 % 0.0566 0.6576 £ 0.0160
Voting 2.3682 4 0.0601 1.8738 £ 0.0564 0.7345 +0.0122
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Figure 16. Performance comparison of static regressors at the scale prediction layer. (a) Performance
comparison based on static regressors with and without feature selection and optimization (scale pre-
diction layer). (b) Comparison of static regressors based on the Friedman test (scale prediction layer).

6. Model Explainability

Our experiments have yielded models capable of detecting depression presence, pre-
dicting its severity, and predicting the scale outcomes within the NSHAP dataset. However,
understanding how these models make decisions and identifying the relevant features is
crucial. This is where XAI comes into play, providing in-depth insights into the model’s
operations and the factors influencing depression. XAl techniques improve transparency by
elucidating the decision-making processes of the models. They allow us to identify which
features are most important. By revealing these underlying mechanisms, XAl not only
builds trust in the models but also offers valuable information on the factors that contribute
to depression, ultimately informing better intervention strategies. Note that the detection
layer’s XAl relies on the XGB static ensemble model to generate feature importance figures,
while the severity prediction XAl utilizes the AB model. These models were chosen as
they demonstrated the best performance during their respective experimental stages and
facilitated the extraction of feature importance with ease. This approach was adopted
because obtaining feature importance from dynamic ensemble models is more complex
and less feasible.

6.1. Detection Layer XAI

Figure 17a presents a summary plot of the most significant features, while Figure 17b
shows a beesplot illustrating the impact of each feature on predicting whether an indi-
vidual is depressed or normal. Notably, many mental health questions, such as FLTEFF
(“felt effortful when doing things”), FLTENS (“felt tense or wound up”), and GOMYWAY
(“things are going my way”), are significant contributors. This aligns with the established
practice of assessing depression through questionnaires such as PHQ-9 or BDI, which are
reliable questionnaires for detecting the presence of depression in an individual [32,69].
For example, FLTEFF is a critical indicator. A lower value in FLTEFF (indicating less effort)
correlates with being normal, whereas a higher value (indicating more effort) suggests
depression. Among the features that are not related to mental health, an intriguing ex-
ample is TASTEID_2 (identification when tasting). Studies have found that people with
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depression exhibit reduced olfactory performance, which in turn diminishes their ability
to taste, as olfaction plays an important role in tasting [70,71]. Another interesting health
examination feature is COTININE_2 (cotinine levels), which has been linked to depression,
as higher cotinine levels may reduce depressive-like behaviors [72]. The DT analysis is
shown in Figure 18, which further corroborates these findings, highlighting FLTEFF and
GOMYWAY as crucial features. This is consistent with the summary plots, reinforcing their
significance. Supplementary File Figure S1 provides two of the specific decision rule paths,
tracing the progression from top-level features to final predictions, whether the individual
is classified as normal or depressed. These decision paths offer a clearer understanding
of how individual features contribute to the overall classification of the model, further
illuminating the interpretability and transparency of the model.
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Figure 17. SHAP plots for feature importance in the detection model. (a) SHAP summary plot on
feature importance for detection. (b) SHAP beesplot on feature importance for detection.
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Figure 18. Decision tree classifier for detection.

Waterfall plots provide insights into local predictions, explaining how specific in-
stances are classified as normal or depressed. In Figure 19, waterfall plots for a predicted
depressed individual and a predicted normal individual can be seen. Figure 19a shows the
depressed individual, in which high feelings of effortfulness to do things in life (FLTEFF)
and low feelings of control (GOMYWAY) are key mental health indicators. Additionally,
biological factors such as testosterone (especially in aging men [73] and DHEA levels [74]
also influence the model’s prediction of depression. Conversely, in cases where the model
predicts an individual to be normal, as shown in Figure 19b, the individual does not feel
effortful when doing activities in life (FLTEFF) and does not feel much tension (FLTENS).
These features consistently appear across various analyses, underscoring their importance
in the model’s decision-making process.
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Figure 19. Waterfall plot for instances of depressed and normal individuals. (a) Waterfall plot for a
predicted depressed individual. (b) Waterfall plot for a predicted normal individual.

6.2. Severity Prediction Layer XAI

The severity prediction layer is analyzed to determine the features for distinguishing
mild and moderate-severe individuals. Figure 20a,b provide summary plots and beesplots,
respectively. FLTEFF remains the most significant feature, with lower values indicating
mild depression, and higher values indicating moderate to severe depression. However,
additional features such as pain while walking (PWW), Body Mass Index (BMI), and income
emerge as significant in the severity prediction layer, suggesting that the factors influencing
the severity of depression differ from those determining the presence of depression. In
examining these additional features, BMI, associated with being overweight or obese, has
been found to increase the risk of depression, particularly in adults [75,76]. Additionally,
research highlights a strong link between pain and depression, further suggesting medical
evidence for our features such as PWW [77]. Similarly, the income-depression link is well
established, with individuals of lower income being more likely to experience persistent
depression [78]. However, the nature of these relationships—whether BMI, PWW, or income
serve as markers or contributing factors—warrants further investigation. Figure 21, a DT,
highlights PWW as the second most important feature. This suggests that higher levels of
PWW correlate with increased severity of depression [79]. Supplementary File Figure 52
presents two specific decision rule paths, outlining the progression from top-level features
to final predictions, whether the individual is classified as having mild or moderate-severe
depression. Local instance-based analyses, shown in Figure 22a, further illustrate this.
For a case of mild depression, key features include FLTEFF, although its impact is less
pronounced, explaining the prediction as mild rather than moderate-severe. Conversely, in
moderate—severe depression instances in Figure 22b, key features include PWW, PANIC
(sudden feelings of panic), and ATTEND (attendance at meetings of organized groups in the
past year [80]), which contribute to the classification as moderate-severe depression. While
FLTEFF and several other features are common features across both severity prediction and
detection layers, the detection layer reveals additional factors like PWW and BMI that are
crucial for assessing depression severity. This differentiation underscores the complexity of
depression and the need for tailored approaches in both diagnosis and treatment.

As is apparent from the results section, predicting depression severity proves more
challenging than detecting the presence of depression. To further understand this dif-
ficulty, we conducted an analysis of two local instances with misclassified predictions.
Figure 23a shows an instance with a ground truth of mild severity, but the model misclassi-
fied it as moderate—severe. This misclassification can be attributed to the strong positive
contributions of features like LASTEATM (recent eating habits) and TESTOSTERONE_2,
which pushed the prediction towards higher severity despite the presence of mitigating
features such as PWW and FLTEFF, which indicated lower severity. This suggests that the
model may be overly sensitive to specific physiological or behavioral features that tend to
drive predictions upward, leading to overestimation of severity in some cases. In contrast,
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Figure 23b depicts an instance where the ground truth was moderate—severe, but the model
incorrectly predicted mild severity. Here, the feature FLTEFF contributed strongly towards
higher severity, but the model’s attention to features such as PWW and FLTENS drove
the prediction downwards. The model’s tendency to underweight certain psychological
features and over-prioritize physical health factors appears to contribute to this underesti-
mation. A potential improvement to address these misclassifications is the use of feature
re-weighting or adjustment in feature importance during model training. By incorporating
domain knowledge—such as emphasizing the significance of psychological or emotional
health indicators in severity prediction—the model can be fine-tuned to avoid over-reliance
on physical health metrics like pain-related features. Additionally, balancing the dataset
or employing feature selection techniques to mitigate the dominance of certain features
may also lead to better generalization in severity prediction. These adjustments may
potentially help improve the model’s performance, particularly in accurately predicting

depression severity.
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Figure 20. SHAP plots for feature importance in the severity prediction model. (a) SHAP summary
plot on feature importance for severity prediction. (b) SHAP beesplot on feature importance for

severity prediction.
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Figure 21. Decision tree classifier for severity prediction.

6.3. Regression Layer XAI

The regression layer analysis involves examining two waterfall plots: one with an
extremely low depression score of 0 and another with an extremely high score of 27. This
contrast allows for a detailed examination of both ends of the depression spectrum. In
representing the 0 scores depicted in Figure 24a, we observe responses to mental health-
related questions: a 0 FLTEFF, 0 FLTENS, and high scores in positive indicators such as
RESTED (feeling rested). Notably, the feature EVERSMK (individuals with a history of
cigarette smoking) leads the model to be more likely to classify such individuals as having
a normal mental state rather than a depressed one. This may be attributed to the calming
effects of nicotine and its potential use as an antidepressant [81], despite numerous studies

in the literature associating smoking with depression [82].
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Figure 22. Waterfall plot for instances of mild and moderate-severe individuals. (a) Waterfall plot for
a predicted mild individual. (b) Waterfall plot for a predicted moderate-severe individual.
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Figure 23. Waterfall plots for misclassified instances of mild and moderate-severe individuals.
(a) Waterfall plot for a mild instance misclassified to moderate—-severe. (b) Waterfall plot for a
moderate—severe instance misclassified to mild.
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Figure 24. Waterfall plot of instances of lowest and highest scores. (a) Waterfall plot for score 0
(lowest). (b) Waterfall plot for score 27 (highest).

In contrast, the waterfall plot depicting the score of 27 in Figure 24b shows elevated
levels in all key mental health indicators: high FLTEFF, high FLTSAD (feelings of sadness)
and low scores in indicators like RESTED (feeling rested) or WASHAPY (felt happy). This
reinforces the importance of mental health questions in detecting depression, as these
questions consistently emerge as significant predictors. This is why depression assessments
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often rely heavily on questionnaires such as the PHQ-9 and BDI that ask questions about
mental health.

6.4. Top 50 Features in the Detection Layer and the Severity Prediction Layer

In this section, we identify the top 50 features by conducting 10 trials with the best
static ensemble models (as it is difficult to obtain feature importances in DES methods)
and selecting the most frequently occurring features. This approach provides clinicians
with an abstract overview of key indicators for the presence and severity of depression.
Supplementary File Figure S3 presents the 50 most frequent features identified for detec-
tion. These features encompass several categories, including mental health, relationship
happiness, household income, and level of education. Supplementary File Figure 54 illus-
trates the top 50 features for predicting the severity of depression. In particular, there is a
higher prevalence of health examination features in this analysis compared to the detection
layer. Features such as blood pressure, BMI, and taste identification are more prominent,
suggesting that severe depression may be associated with significant differences in these
health metrics. In addition, social network support features, such as feelings of loneliness
or social isolation, are more prevalent. Although there are many similarities between the
two sets of features, the distinction highlights the complexity and multifaceted nature
of depression.

In this study, the proposed model achieved the best results compared to the literature.
The model provides accurate and personalized decisions. In addition, the model provided
medically relevant XAl features that improved the trustworthiness of physicians. The
resulting model is medically applicable in real medical settings and is expected to improve
the detection capabilities of domain experts. Practical implications of the model in a real
environment can be achieved by extending it in the following directions: (1) implementation
of a clinical decision support system that smoothly integrates model decisions with XAlI,
(2) an external and clinical validation of the model to evaluate its generalization results
based on domain experts usage and external datasets that evaluate the model’s real-world
efficacy, (3) integration of the resulting systems with the hospital’s electronic health record
ecosystem, and (4) extension of the current detection model to provide treatment plans
based on severity prediction, which could optimize clinical resources and outcomes. The
current study is based on structured data that provide a more applicable and cheaper
method to detect depression. However, the fusion of multimodal data such as biomarkers,
gyroscopic findings, and functional magnetic resonance images is expected to improve the
performance and medical relevance of the resulting model. This integration of different
data sources is expected to provide a deeper understanding of the disease, which results in
new disease biomarkers that can be used by the domain expert in real medical settings.

7. Conclusions

This study presents a comprehensive framework to detect and predict the severity
of depression using a multilayered approach that explores classical ML models, static
ensemble models, and DES techniques. The primary objective is to improve the precision
and interpretability of depression detection and severity assessment among older adults
using the NSHAP dataset. Through rigorous experimentation, we demonstrated that dy-
namic ensemble models, particularly the FIRE-KNOP method, consistently outperformed
classical and static ensemble models in both detection (normal vs. depressed) and severity
prediction (mild vs. moderate—severe depression) tasks. The highest accuracy achieved
in the detection layer was 88.33% =+ 0.96% using the FIRE-KNOP method with a mixed
pool of classical and static ensemble classifiers. In the severity prediction layer, the FIRE-
KNOP method with a mixed set of classical and static ensemble classifiers also achieved
an accuracy of 83.68% % 1.49%. These results underscore the superior performance and
robustness of dynamic ensemble techniques over traditional models. Furthermore, mixing
classical and static ensemble classifiers in DES techniques proved to be the best approach
because it leverages the strengths of both methods, enhancing overall model accuracy
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and robustness. The regression layer further enriched our analysis by predicting exact
depression scores, which complements the other layers. The CBR model emerged as the
most effective, achieving an RMSE of 2.3256 £ 0.0515. This highlights the potential of com-
bining rule-based and instance-based learning methodologies to make precise predictions.
After implementing all three layers, the detection layer enables us to predict whether an
individual has depression with approximately 88% confidence. If depression is detected,
the severity prediction layer can estimate the individual’s severity level with about 83%
confidence. The regression layer then serves as a confirmation layer, predicting the exact
PHQ-9 score with a margin of error of approximately 2.33 RMSE on a scale of 0 to 27. This
allows for verification of whether the PHQ-9 score aligns with the predictions from the
detection and severity prediction layers. The best models are selected to provide XAl fea-
tures for decision-making. This process improves the understanding and transparency of
the decision. We applied two well-known SHAP and DT techniques to provide global and
local XAl features. The explainability consistently highlighted key features such as FLTEFF,
TASTEID_2, COTININE_2, and GOMYWAY, which are medically critical to predicting
depression. This study contributes to the field by providing a robust and interpretable
framework for the assessment of depression by integrating dynamic ensemble models with
XALI techniques.
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