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ABSTRACT The Fitzpatrick scale is a widely used tool in dermatology for categorizing skin types based
on melanin levels and sensitivity to ultraviolet light. The primary objective of this study is to enhance the
accuracy of Fitzpatrick scale classification by addressing limitations in existing methodologies. Current
approaches either rely on custom-designed hardware or utilize the Individual Typology Angle (ITA) for
image classification; however, these methods typically allow for a one-tone difference in classification and
achieve a maximum accuracy of approximately 75%. A primary task for skin tone classification in images,
is to apply filters to detect skin regions in an image. However, the filters proposed for detecting skin do not
apply to general datasets. In this paper, we propose a novel classification method that employs specialized
filters to accurately detect and remove skin surface attributes, such as wrinkles and pores, using a controlled
environment dataset obtained from a professional skin analyzer device. Ourmethod involvesmodeling image
features as a nine-dimensional feature vector, followed by a dimensionality reduction process to identify the
most influential features and dominant areas within the feature space, enabling deployment on low-power
devices. We conducted extensive classification experiments using various Machine Learning algorithms.
The results of our cross-validation tests demonstrate a significant improvement in classification accuracy,
reaching up to 97%, thereby outperforming state-of-the-art methods without relaxing the accuracy criteria.

INDEX TERMS Fitzpatrick scale, skin tone classification, image-based classification, individual typology
angle (ITA), feature engineering, skin analyzer device, dermatology image analysis.

I. INTRODUCTION
Skin tone classification is a vital topic in the cosmetics
industry and dermatology [1]. Its importance in medicine is
due to its correlation with skin health and skin diseases. In the
medical field, relevant studies relate skin tone to malignant
melanoma and the risk factors for each tone [2], [3]. Some
studies aim to recognize carcinoma as well as melanoma [4].
Many of these diseases can be treated if detected early,
as well as other skin diseases are often present differently
depending on a patient’s skin tone [5], this emphasizes the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

importance of improving skin tone classification methods.
As a numerical classification approach to classify skin types
based on melanin and the response to Ultraviolet (UV)
radiation, the Fitzpatrick scale [6] is proposed for measuring
skin tones. To obtain the Fitzpatrick index, traditionally,
an expert examines the skin of the subject and classifies the
skin type into one of the six categories described in Table 1.

With the advancement of Artificial Intelligence (AI) and
photonics technology, it is now possible to identify skin
types without relying on human interpretation. In this context,
using Fitzpatrick classification, various solutions have been
proposed and could be categorized as device-based [7] and
image-based [8], [9].
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TABLE 1. Fitzpatrick scale categories.

In device-based skin tone classification, hardware systems
are used to emit custom-tuned lights, and the properties
of the light reflected from the skin are used to determine
the Fitzpatrick skin type [7]. On the other hand, image-
based skin type classification does not rely on special
hardware but instead uses images to differentiate skin
types [8], [9]. More recent approaches [10], [11], [12]
use the Individual Typology Angle (ITA) [13], which is
a rule-based classifier, for Fitzpatrick scale measurement.
Utilizing Fitzpatrick Scale-based skin analysis offers various
applications for smart devices. It provides personalized
skincare recommendations, tracks sun exposure, and suggests
beauty products based on skin type. Additionally, it assists
in health monitoring by detecting skin tone changes, enables
teledermatology consultations, and enhances virtual try-ons
in fashion and e-commerce. These features make the skin care
devices a versatile tool in both personal care and healthcare.

One of the most challenging issues in the Fitzpatrick
classification problem is the measurement accuracy [3], for
which device-based approaches score better than image-
based approaches due to the inconsistency in image qualities
and the high variability of how the image is captured [14],
[15], [16]. For improving the Fitzpatrick measurement
accuracy, device-based approaches [7] use a controlled
environment covering the skin and use specialized lights
for their analysis. However, the results of these devices are
measured during sampling time, and moreover, these devices
do not use images for analysis because they are based on
spectrophotometry [2], [7], [17] or photo-acoustic [18], [19],
[20], [21] technologies.
To solve these problems, we propose a novel method for

Fitzpatrick classification.We use a professional skin analyzer
device that can provide images to be analyzed. Using labeled
images from a controlled environment, we design novel filters
to detect skin surfaces in images. One of the challenging
issues is the fact that the optical zoom is high in device-
taken images, so the skin texture (such as wrinkles or pores)
are captured in a darker tone and it can result in the image
being misclassified. After the filtering phase, we propose a
novel feature engineering algorithm to identify influencing
features and then perform the Fitzpatrick scale classification
utilizing Machine Learning (ML) algorithms. Furthermore,
the proposed method is designed to make the Fitzpatrick
classification more accurate, and our methodology can be
extended to other specialized skin analyzers that are able
to produce images in a controlled environment. We also
present a unique reflection reduction method using a novel

discriminating criteria. During experiments, first, we used
feature engineering to extract and select skin-related features
from the color spaces suggested in [22]. However, after a
deep study and analysis, we identified the most influential
features through a correlation study, supported by Principal
Component Analysis (PCA). Finally, we conducted extensive
experiments on the influencing features in the reduced
dimension.

In theory, our proposed methodology is similar to other
works, such as [11], [12] in the sense of using a controlled
environment and a unified value per image. Yet, in our pursuit
to enhance accuracy and ensure accessibility on resource-
constrained devices, we encountered numerous challenges
necessitating innovative approaches and simplifications to
effectively address the Fitzpatrick classification problem.
Specifically, our focus lies in overcoming four key chal-
lenges, outlined as follows:

A. CHALLENGE 1
The primary challenge lies in the inconsistency of image
qualities and the wide variability in how skin images are
captured. This variability significantly hampers the process
of identifying suitable features for classification due to the
inherent nature of skin images.

B. CHALLENGE 2
The second challenge entails optimizing the proposed
methodology to be efficient and lightweight, ensuring
it can perform classification effectively on devices with
limited resources. Considerations for real-time processing
and energy efficiency are also crucial for deployment in
resource-constrained environments.

C. CHALLENGE 3
Accurately detecting the skin surface while avoiding inter-
ference from skin textures and light reflections poses a
significant challenge in preventing misdetections. Robust
techniques for distinguishing genuine skin features from
artifacts are essential, requiring sophisticated techniques
capable of discerning subtle differences in texture and
illumination.

D. CHALLENGE 4
Lastly, improving the overall accuracy of classification is
paramount in skin classification, especially considering the
medical implications involved in the procedure.

Tomeet our objectives, particularly in addressing the afore-
mentioned challenges, we have devised a novel methodology
for Fitzpatrick scale-based image classification employing
ML techniques, specifically tailored for low-powered skin
analyzer devices operating in controlled environments.
The proposed methodology aims to improve measurement
accuracy, detect and remove skin surface attributes such
as wrinkles and pores, perform an effective dimensionality
reduction by identifying the most influential features for
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accurate classification, and create a unified 3D vector that
represents each image to make it lightweight enough to
deploy on devices with limited resources, as well as reduce
the overall ML techniques complexity by reducing its
parameters.

Our main contributions are listed below:

• We propose a novel and automatic Fitzpatrick scale-
based image classification technique for low-powered
skin analyzer devices that work in controlled environ-
ments.

• We designed a novel skin filter capable of identifying
skin surface and textural imperfections that can result in
a misclassification to a darker skin tone.

• We propose a novel reflection removal technique to
avoid the reflections caused by skin sebum in images
that can bias the classification to a brighter skin tone
by using a novel discriminating criteria for detecting
reflections.

• With the aim of performing dimensionality reduction
and using feature engineering to improve the perfor-
mance by reducing classifier parameters, we identify the
three most influencing features that can show similar
accuracy to the feature vector containing nine selected
features from image channels.

• We evaluated our proposed system through extensive
experiments, classifying the Fitzpatrick scale using
various ML classification methods.

II. RELATED WORK
Dermatologists utilize the Fitzpatrick scale [6], which
rates skin tone from I (F1)-lightest- to VI (F6)-darkest-,
to categorize susceptibility to sun exposure. Of course, there
are differences in skin tones between Caucasians and African
Americans. In addition, independent of variations in skin
tone, there are differences in facial morphology by race,
gender, and person.

There are twomain streams amongmethods for classifying
the Fitzpatrick scale: device-based and image-driven. In the
device-based stream, spectrophotometry is the standard
technique for measuring skin tone [2]. Commercial devices,
such as the DSM II ColorMeter (Cortex Technology ApS,
9560 Hadsund, Denmark) [23], measure melanin levels using
the method proposed by [17], which relies on red, green,
and blue wavelength remittances. The accuracy of an Skin
Tone Meter (STM) prototype device that emits light at a
wavelength of 460 nm, where melanin absorption dominates
over other skin chromophores such as oxyhemoglobin and
water, was examined in [7]. By measuring the intensity of
reflected light, the STM device calculates the subject’s skin
Pigmentation Index (PI) which is then mapped to one of the
skin types in the Fitzpatrick scale. Although the results show
promising improvements against the conventional Fitzpatrick
questionnaire method, however, mapping of PI indices to
Fitzpatrick skin types is not scientifically proven and, in this
case only applicable to the chosen STM device. Other

approaches are based on photoacoustic and reflectance over
skin [18], [19], [20], [21].

On the other hand, the rapid advancement of computer
vision and AI has enabled the classification of the Fitzpatrick
skin type, leading to the image-driven approach. However,
one big challenge for accurate measurement of skin type
using images is varying illuminations. To mitigate the effect
of different illumination conditions, [8] proposed a method to
extract skin tone from skin images of COVID-19 patients by
normalizing the lightness component in the hue-saturation-
lightness scale. Although lightness normalization allows an
approximation of the true skin color, however, the accuracy
of their approach is debatable as only one normal skin
pixel is selected from each patient image. On the contrary,
instead of using a single pixel, [9] identifies their Region
of Interest (ROI) from full-face images using face landmark
detection. Specifically, three regions are selected from the
forehead, left cheek, and right cheek. To reduce the impact
of changing illuminations and backgrounds, [9] decomposes
reflected light into specular and diffuse components where
the latter is used to construct a skin color metric. Their
approach shows greatly reduced intra-subject variation in
skin type estimation even if the illumination and background
vary drastically. Nevertheless, due to a lack of ground
truths, the accuracy of skin type classification against the
true skin color of the subjects is unknown in their work
as well.

Utilizing color information and making use of the fact
that skin tone colors share some common characteristics [22]
which are also useful for the Fitzpatrick classification.
However, before skin tone classification, the problem of
detecting skin area appears. The skin detection problem
is typically solved by implementing computer vision-based
filters and setting an ROI as [24], [25], and [26], however,
these techniques just remove noise from the skin and do
not determine the skin tone. Other studies such as the LBP-
based methods [27], [28], [29] aim to classify general texture
features e.g. fabric types. However, skin textures differ from
general textures depending on many factors like the part of
the body where the image is taken, the age of the subject,
and skin condition. Moreover, these techniques do not apply
to our work since the aim of our study is to classify skin
tone and not to classify the general texture labels or in
our case the skin texture labels. Certain skin identification
techniques can be used with grayscale images, such as [30],
but they only produce decent results when used with high-
resolution images because they study local texture properties.
The appropriate color space transformation can be used to
create rules that discriminate between skin pixels and other
kinds of items and then the skin tone is classified using
ITA [10], [12].
These methods necessitate the use of RGB color images

because they are based on color information. This family of
methods could not be used in a particular situation where
other sensors are added since it was not possible to build
a way that could function with the grayscale camera output
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from the Single-photon Avalanche Diode (SPAD). There is
also an important difference between cameras and settings
that makes difficult the discrimination between skin and
noise.

Other approaches aim for face segmentation, also known
as face parsing, which is the process of tightly segmenting
an input image of a face into regions that correspond to
the various parts of the face and the backdrop [11], [12],
[31]. This is done densely by labeling the pixels or assigning
a label to each pixel. We are not addressing this issue
since our dataset is collected from a specialized device,
i.e., Dermo Prime (DP) [32] that can take images from
any part of the body as well as the face. Groh et al. [10]
annotated dermatology clinical images with Fitzpatrick skin
type labels. For their experiments and testing, they used a
filtered and masked image approach, applying the overall
non-masked pixels’ ITA [13] for Fitzpatrick classification.
This method involves a CIELAB transformation [33] to
compute the output using a specific formula, followed by
ITA, a decision rule-based approach that classifies skin type
based on predefined ranges. They observed that the skin
type in the images used to train the model had an impact
on the accuracy scores across Fitzpatrick skin types. They
also constructed a deep neural network model to detect skin
disorders. References [11] and [12] proposed a method for
classifying the Fitzpatrick scale over face images. They used
color transformation and filters as preprocessing ITA for
classification. They used the mean value of the skin pixels
and then compute ITA.

Existing literature does not address issues like specialized
filters for low-power devices. Moreover, their filtering
processes are expensive in terms of computation and can
slow down the performance of the overall analysis. On the
other hand, the images acquired are from uncontrolled envi-
ronments which makes it hard to use existing classification
techniques for the Fitzpatrick scale measurement. To solve
these problems, we propose a novel method for Fitzpatrick
classification. The images are generated by a professional
skin device for analysis. We propose filters to identify skin
surfaces in images by using labeled images generated in a
controlled environment. We also address the issue of feature
engineering to find influencing features and then perform
Fitzpatrick scale-based classification using ML algorithms.

TABLE 2. CDP analyzer specifications.

III. METHODOLOGY
The abstract view of the proposed Fitzpatrick Scale based
Classification utilizing ML techniques (FiSC) framework for

skin tone classification is shown in Fig. 1 and comprises four
phases i.e., Data Preparation, Data Pre-processing, Feature
Engineering, and Training and Applying Classification
Models.

A. DATA PREPARATION
The proposed techniques are best suited to classify the images
being produced by skin analyzer devices, e.g., CDP [32].
Professional skin tone dataset images are captured under a
custom-tuned Plain Polarized Light that best preserves the
colors of the true skin tone. Fig. 2 shows the wavelength
emitted by the skin analyzer device when taking skin images
with Plain Polarized Light, which is simply defined as light
visible to the naked eye. Table 2 shows the specifications of
the device.

TABLE 3. Number of images in each category of the FiSC dataset and FiSC
aug-dataset.

Using the skin analyzer device [32], we produced an image
dataset called FiSC Dataset consisting of 2800 images. The
images were human-labeled according to Fitzpatrick scale
standards and validated by domain experts. Based on Scale
AI’s dynamic consensus approach, two annotators labeled
the Fitzpatrick skin type of each image, with the help of this
device that counts with an optical zoom of 20X. Each image
is evaluated by annotators more objectively among ethnic
groups [15]. Sample labeled images of the dataset are shown
in Fig. 3. The dataset includes a diverse range of images
collected from candidates spanning multiple ethnic groups
including Eastern Asians, Southeastern Asians, Caucasians,
Hispanics, and South Africans using the Skin Analyzer
device.

We use data augmentation techniques to balance the
categories since there are a few images in Fitzpatrick
phototypes F5 and F6, thus, we round the number of samples
to 1500 samples per phototype. The augmentation techniques
used are: flip top bottom, flip left-right, and rotate 180◦,
we did not use scaling since the device already has an optic
zoom of 20x and this can distort the image quality.We call the
augmented dataset as FiSC-Aug Dataset. The labeled images
for each phototype category are shown in Table 3.

B. DATA PRE-PROCESSING
Since the images in the dataset are taken using a specialized
device, but the optical zoom is high, the skin texture, like
wrinkles or pores that are captured in a darker tone can result
in misclassification of the real skin tone. To alleviate this
issue, we propose a skin filter based on image transformations
and reflection removal technique.

VOLUME 13, 2025 42937



G. C. Garcia et al.: FiSC: A Novel Approach for Fitzpatrick Scale-Based Skin Analyzer’s Image Classification

FIGURE 1. Block diagram of the proposed architecture.

FIGURE 2. Wave length emitted by the CDP analyzer.

1) SKIN FILTER
Finding the skin textures clearly is imperative for skin surface
detection. To achieve this, we tested the techniques presented
by [24] and [26] on the FiSC dataset. Since the FiSC dataset
uses images taken from optical zoom-based devices in a
controlled environment, the results of using the techniques
presented in [24], [25], and [26], were not satisfactory,
since these techniques are oriented to locate the skin as
ROI and mask otherwise. However, we are using masking
techniques to differentiate skin and skin textures. In this
regard, we propose a novel approach that best suits datasets
being produced by optical zoom-based devices. We utilize
an Adaptive Histogram Equalisation (AHE) technique [34] to
detect the skin surface. More specifically, we use the Contrast
Limited Adaptive Histogram Equalization (CLAHE) method
proposed by Zuiderveld and Karel [35], which is a type
of AHE in which the amount of contrast amplification is
constrained, thereby limiting the range of contrast. After the
skin surface detection, the resulting image from CLAHE
is converted to Hue, Saturation, and Value (HSV) color
space. For skin texture and surface, we exploit the notion of
depth proposed by [36] for stereoscopic images. This can be
explained as the difference in HSV color space that is related
to the depth that can be used in a single camera with a fixed

distance from the lens to the skin, this difference appears
in skin marks and not in flat skin. Having the HSV image
derived from the CLAHE, this image can contain some noise.
We denoise the image through a binary threshold that we
call R’’G’’B’’ (denoised) image. In the R’’G’’B’’ image, the
patterns of texture are clearly visible in green and black as
well as the skin surface in red as shown in Fig. 4. Finally,
we mask the textures and overlap this mask into the original
image, which is then fed to the reflection removal step.We set
the filtering condition as a function fc in (1), where if the
conditions are fulfilled, the value is true, and if not, the value
is false.

fc =

{
RGBijk , if R′′ij0 = 255 ∧ G′′ij1 = B′′ij2 = 0

[0, 0, 0], otherwise
(1)

Using the matrix representation of the channels in color
spaces and normalizing the original image, the RGB channels
represent the original image. The R’G’B’ are the R’’G’’B’’
channels, which are converted to RGB color space. We assign
the resultant values to the resultant matrixMijk . The filtering
process is described in (2), where the original image has
dimensions i × j, k = [0, 1, 2]. If the value is false for Mijk
then assigned value is [0, 0, 0], otherwise the assigned value
is [Rij0,Gij1,Bij2] that is the value of the original image.{

R′′ij0G
′′

ij1B
′′

ij2
Rij0Gij1Bij2

}
| fc→


Mij0
Mij1
Mij2

 (2)

Algorithm 1 illustrates the proposed skin filter process.
First, the CLAHE technique is applied to the original RGB
image, resulting in what we call the CLAHE image. Then,
the CLAHE is converted to HSV CS, resulting in HSV. The
HSV image is converted to RGB CS channels, resulting in
what we call the R’G’B’ image. To remove the noise, a binary
threshold is applied to the R’G’B’ image, resulting in what
we call R’’G’’B’’. Finally, it is necessary to mask the image as
described in fc, resulting in themasked imageM. The returned

42938 VOLUME 13, 2025



G. C. Garcia et al.: FiSC: A Novel Approach for Fitzpatrick Scale-Based Skin Analyzer’s Image Classification

FIGURE 3. Fitzpatrick image sampling from device (a) photo-type F1 (b) photo-type F2 (c) photo-type F3 (d) photo-type F4 (e) photo-type
F5 (f) photo-type F6.

FIGURE 4. Transformation process for identifying skin and textures:
(Top-left) original skin image, (Top-right) CLAHE transformation,
(Bottom-left) HSV transformation, (Bottom-right) R’G’B’-D denoised.

image is the masked image from the Skin filter’s returned
image with the generated mask overlapped.

2) REFLECTION REMOVAL
After all skin filters have been applied, we propose a method
for removing reflections asmany images have them as a result
of the device’s specialized lights. We use a Gaussian filter
to smooth and reduce the noise in the image. To deploy a
Gaussian Filter to an image, we define the size of the kernel
which is a matrix built up through the values computed by the
Gaussian function in (3), and is used for convolving all over

Algorithm 1 Skin Filter
Input: RGB
Output: Masked Image

1 CLAHE← Apply to CLAHE RGB
2 HSV← Convert CLAHE
3 R’G’B’← Convert HSV to RGB
4 R’’G’’B’’← Threshold R’G’B’
5 M← Apply fc to R’’G’’B’’

the image.

h(l, k) =
1

2πσ 2 e
−
l2+k2

2σ2 (3)

Here, l is X coordinate value, k is Y coordinate value of the
Gaussian kernel and σ is the Standard Deviation. We apply
the Gaussian Filter using the Gaussian kernel h(k, l) in (3).
The Gaussian Filter is computed as a weighted summation
of the input pixel values f (i + k, j + l), and is applied to a
resulting image g(i, j) in (4).

g(i, j) =
∑
k,l

f (i+ k, j+ l)h(k, l) (4)

To calculate the range of pixels with brighter values that
can be perceived as reflection, we compute a mono-channel-
based intensity histogram over the grayscale image after the
RGB to grayscale conversion. Then, using the histogram to
get the highest hit bucket value, we scan the grayscale image.
In the context of image processing, the word ‘‘intensity
histogram’’ refers to a histogram of the pixel intensity
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FIGURE 5. Filter behavior per photo-type (a) photo-type F1 (b) photo-type F2 (c) photo-type F3 (d) photo-type F4 (e) photo-type F5
(f) photo-type F6.

(grayscale) values calculated from an image. This histogram
is a graph that shows the number of pixels in the input
picture at each distinct intensity value.We define a composite
intensity histogram as H, and thus as a set, we define the
composite intensity histogram of an image as C in (5), where
h(i) is the histogram value at intensity i (the number of picture
pixels n(i) bearing the intensity grey level value i), and ℓ is the
total number of different intensity levels called buckets that an
image can have for the intensity quantization. We then define
C(k) in (6).

C = {h(i) | i = 0, 1, 2, . . . , ℓ− 1} (5)

C(k) =
k∑
i=0

h(i) (6)

This model can be used to represent the histogram if we
define it as a probability distribution. Let ψ be an image with
an integer pixel intensity range of 0 to ℓ − 1, represented
by a mr × mc matrix, where ℓ is the total number of
possible intensity values (typically between 0 and 256). Then
p represents the normalized histogram of f with a bin for each
possible intensity as shown in (7).

pn =
ψ

N
(7)

Here, ψ = {0, 1, . . . , ℓ− 1} is the total pixel number with
intensity n and N is the total number of pixels. Using (7), the
probability distribution can be transformed from a discrete
variable to a continuous variable. The motivation for this
transformation comes from considering the intensities of f
and g as continuous random variables X ,Y on [0, ℓ−1] with

Y defined in (8).

Y = T (X ) =
∫ X

0
(ℓ− 1)pX (x)dx (8)

Algorithm 2 Reflection Removal
Input: Masked image from Filter
Output: Masked Image

1 G← GaussianFilter(G)
2 G← RGB2Grayscale // Mono Channel
3 H← IntensityHistogram(G) // Avoid 0 (black)
value

4 i←MaxHitBucketValue(H)
// Discriminate reflection pixels

5 foreach pixel δ ∈ G(x, y) do
6 if δ > (i× C) then
7 RGB(x,y)← 0,0,0 // black
8 end if
9 end foreach

We use this continuous representation to define the
maximum hit bucket value i from the histogram, which is
the local maximum of the probability distribution in the
continuous variables where the derivative slope is 0, and we
define this in (9).

Y = i = T (X ) =
d
dx
p(x) = 0 (9)

After the intensity histogram is applied, it is used to
discriminate the reflections in the following way: Let δ be
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individual pixels ∈ G(x, y), the discrimination criteria is
defined in (10).

δ > (i× C) (10)

Here, i is the maximum hit bucket value from the intensity
histogram, and the factor is a constant C that can be obtained
using the local maxima. The Skin-Fine filter’s returned
picture, with the generated mask overlapped, is the masked
version of that image. The behavior of our filtering method
is shown in Fig. 5. The proposed technique of Reflection
Removal is shown inAlgorithm 2. TheGaussian filter in (4) is
applied and then the resultant image is converted to grayscale.
The intensity histogram in (6) is created and by applying the
criteria, the max hit bucket is identified as in (9). Finally, the
pixel values are being discriminated as defined in (10). If the
criteria is not accomplished, it is set as black, which means
that it is detected as reflection.

TABLE 4. Feature description per channel.

C. FEATURE EXTRACTION
Our goal is to estimate skin tone through correlation with
the Fitzpatrick labels, and for this purpose, ITA is widely
used. ITA is a measure of the topology angle calculated from
statistical features of pixels in an image. Previous studies
by [10] and [12] used ITA to evaluate masked images over
the non-masked areas. In our proposed method, similarly,
we filter the image to detect skin pixels and mask the
image otherwise. We extract these skin pixels to perform
feature engineering. In this context, we propose color space
transformations and find the most relevant features. However,
using individual pixel values for feature engineering is not
practical due to the large number of pixels per image.
To address this, we suggest using a representative value such
as the average, which is feasible in our proposedmethod since
most filtered pixels have similar values.

1) FEATURE EXTRACTION FOR DETECTED SKIN
The masked image has been transformed in the way that
it is identified as the skin on images and is set as a black
mask on everything else. Over these RGB Color Space (CS)
images, two specific transformations are performed: HSV
and CIELAB (LAB). Each image (and channel) undergoes
a complete pixel-wise scan to extract a unified value for each
channel. Note that there are nine channels total per image
after the CS transformations. For simplicity, we will refer to
each channel’s unified value as shown in Table 4. This image

only contains what is considered as skin, everywhere else is
the black mask. To extract the unified value, we noted after
experiments that the most representative value for unified
value calculation is the average value. This extracted unified
value per channel from the input image can be modeled as a
9D space feature vector as follows [r, g, b,L,A,B,H , S,V ].

Algorithm 3 Feature Extraction
Input: Channel from Color Space
Output: Unified value per channel

1 C← Channel // Mono Channel
2 counter← 0
3 values← 0
// Unified value per channel

4 foreach pixels of image p ∈ C(x, y) do
5 if p > 0 then // 0 is pixel of mask
6 Increase counter
7 values← values + p
8 end if
9 end foreach
10 if counter > 0 then
11 Unified value← values/counter
12 end if

Algorithm 3 shows the step-by-step process of feature
extraction. First, we have each channel per CS and set a
counter and valueswhere we will sum up the individual pixel
values. Then, we check that there are skin pixels that after
filtering and reflection removal are not masked (pixel value
is > 0), and increase the counter as well as sum up the values.
Finally, we check if there is not a ‘‘black’’ image where there
is not any skin detected and return the unified (average) value.

2) INFLUENTIAL FEATURES SELECTION
Having the 9D feature vector, the feature vector is analyzed
using PCA for checking covariance among the features and
checking for influencing features that have no correlation
for performing a dimensionality reduction on the most
influencing features. These influencing features are located
in clusters that we call the dominant areas. Our dataset is
modeled as 9D as described in (11).

xT =



x1
x2
x3
x4
x5
x6
x7
x8
x9


=



r
g
b
L
A
B
H
S
V


(11)

To reduce the dimensionality, our feature engineering
approach should find the most influencing features. With
this aim, first, we applied a covariance study among the
9D features over the raw dataset images to detect potential
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influencing features. The covariance between two elements
is determined using (12).

σjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k ) (12)

Using this covariance calculation, the covariancematrix
∑

is defined as a d × d matrix in which each element indicates
the covariance between two features, This covariance matrix
can be calculated using the (13), where x̄ = 1

n

∑n
i=1 xi is the

mean vector. ∑
=

1
n− 1

(
(X − x̄)T (X − x̄)

)
(13)

The eigenvectors v are represented as n × 1 matrices, and
the linear transformation can be represented in the form of an
n× n matrix, and having the eigenvalue in (14) for the linear
transformation stated above can be expressed as the matrix
multiplication as defined in (15).

T (v) = λv (14)

Av = λv (15)

Then, having eigenvectors v and eigenvalues λ, the
matrix A can be decomposed using them, which is called
eigendecomposition, and the correlation among features
is calculated. These eigenvectors and eigenvalues that are
contained in the covariance matrix represent the fundamental
elements of a PCA analysis in the following way: The direc-
tions of the newly estimated feature space are determined by
the eigenvectors, which are principal components defined in
PCA, and by the eigenvalues, which determine the magnitude
of these main components. In other words, the variance of
the data can be explained by the eigenvalues along the new
feature axes.

PCA aims to perform this eigendecomposition and maxi-
mize the variance and it is calculated with (13). Each value
in the mean vector, an n-dimensional vector, reflects the
sample mean of a feature column in the dataset. In the
higher-dimensional space, our goal is to reduce the number
of features for the classification, which is done through our
feature engineering approach. We select the most relevant
skin features which we call influencing features of each CS
to be near the axes of the PCA. These influencing features are
then clustered in dominant areas.

D. CLASSIFICATION MODELS
ML is the field that studies algorithms that learn from data.
The goal is to construct a function f (x) that can map the input
feature x to the response variable y. When y is a category, the
ML task is called classification. In this study, we used ML
algorithms to classify the Fitzpatrick scale type. We use two
sets of features as input for evaluating our proposed method.
The input x for the ML algorithms is the extracted feature
vector representing the unified value per channel. In this
work, we use seven ML techniques, i.e., Logistic Regression
(LR) [37], k-Nearest Neighbours (KNN) [38], Decision Trees

(DT) [39] and Support Vector Machines (SVM) [40], two
ensemble algorithms: Random Forest (RF) [41] and Gradient
Boosting Machines (GBM) [42], and Dense Neural Network
(DNN) [43].

1) LOGISTIC REGRESSION
The goal of logistic regression is to classify the response
variable into one of six skin types [37]. Becausewe havemore
than two classes, this method is called multinomial logistic
regression. For a skin type c ∈ C , we model the probability
of a sample belonging to that class using (16).

P(Y = c | X = x) =
eβ

T
c x

1+
∑

l∈C e
βTl x

(16)

where the vector βc represents the regression coefficients
for each class c. The logistic regression function classifies
a sample into the skin type with the highest estimated
probability.

2) K-NEAREST NEIGHBORS CLASSIFICATION
The KNN classification algorithm is a pattern recognition
technique that seeks to identify the k closest relatives in
subsequent cases using training datasets [38]. When KNN is
used in classification, it estimates the k closest data points that
are near the sample x, represented by η. Then, it estimates the
conditional probability in (17) for class k as the fraction of
neighboring points whose class is equal to k .

P(Y = c | X = x) =
1
k

∑
i∈η

I (yi = c) (17)

where I represents the indicator function, which returns
1 if the condition inside the function evaluates to true, and
0 otherwise.

3) SUPPORT VECTOR MACHINES CLASSIFICATION
The Support Vector Machine (SVM) classification seeks
to train and categorize data in accordance with polarity
levels [40]. The goal is to find the hyperplane that can
accurately divide the data. The optimum hyperplane is
thought to be the one with the greatest distance between
each class. In order to optimize the machine learning rate,
the hyperplane is formulated in (18), where x is an array of
vectors and w is a constants array.

w× x + b = 0 (18)

Once the hyperplanes are established, the following
definition of the hypothesis function for making predictions
are available as (19), where the classifier will assign the point
above or on the hyperplane to a class+1 and the point below
to a class −1, respectively.

h(xi) =

{
1, if w× x + b ≥ 0
−1, otherwise

(19)

This method can adapt many hyperplanes; due to the
different features and the variety of the images, this is a
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complex dataset, and many hyperplanes should be required,
making this a huge classification model in terms of size and
complexity to compute as well. When the dimensionality was
reduced, the model showed better performance, as in our
influencing feature selection approach.

4) DECISION TREE CLASSIFICATION
Decision trees are a supervised learning technique that aims
to partition the feature space into more homogeneous regions
with respect to the response variable y. The impurity of
feature space regions is measured with different measures,
but the most common is the Gini index [39]. Decision trees
emulate the human decision process and are organized in a
hierarchical structure with a root node that moves to branches
that represent conditional evaluations using features, and then
it moves to the leaves that are used to define boxes or regions
Rm with m ∈ M representing each leaf node in the tree.
Decision trees predict the skin type of each instance to the
most commonly occurring class in the enclosed region R.
It estimates the conditional probability of class c in nodem as
in (20), where Nm represents the number of training samples
that fall in the region Rm.

P(Y = c | X = x) =
1
Nm

∑
xi∈Rm

I (yi = c) (20)

5) RANDOM FOREST CLASSIFICATION
Ensemble learning is a set of algorithms that combine
the results of different single predictive base models for
improving classification performance. Bagging trees (Boot-
strap aggregating) train several decision trees in parallel and
combine their predictions by majority voting. Random Forest
are improved bagging ensemblemodels that de-correlate their
internal decision trees by randomly selecting a subset of
features for training each base classifier [41]. This improves
the generalization performance of the final models as well
as reduces the variance, making Random Forests one of the
most powerful and widely used ML algorithms in practice.
Random Forests built B decision tree classifiers h(x) and
used a majority vote scheme for computing the conditional
probability of a new instance belonging to class c as in (21).

P(Y = c|X = x) =
1
B

∑
b∈B

h(x) (21)

6) GRADIENT BOOSTING CLASSIFICATION
Gradient Boosting Machines (GBM) [42] is a different flavor
of ensemble learning. GBMs are built sequentially, and
each newly trained base classifier attempts to compensate
for the errors of the previously trained models. Boosting
is equivalent to performing a forward stage-wise additive
expansion using an exponential loss function. Thus, GBM
can use an arbitrary differentiable loss function. In a similar
way to logistic regression, GBM predictions work to model
the probability of an instance belonging to class c using (16).
The strategy used is a greedy stage-wise approach, in which

at step b there is an imperfect model with the form in (22).
This way, GBM improves the function Hn(x) by fitting a new
model hn(x) over the so-called pseudo residuals.

Hn(x) = Hn−1(x)+ w× hn(x) (22)

7) DENSE NEURAL NETWORK CLASSIFICATION
Dense Neural Network (DNN) is an Artificial Neural
Network technique that uses backpropagation and multiple
layers between the input and output layers [43]. To perform
similarly to the human brain, in a DNN the following
elements are defined: neurons, synapses, weights, biases,
and functions. With these elements, DNN tries to make a
linear relation among the neurons where prediction is based
on selecting the highest probability for the next layer. This
relation can be represented in (23), where w is the weight
matrix and b is the bias.

y = w× x + b (23)

For training our data, we designed a model with 32 input
neurons and 3 dense layers, with the last output layer having
6 neurons which is the total number of classes. We used
ReLU as an activation function. We regularised the neuron
outputs among the layers using Adam optimizer, and for the
loss function, we used the Sparse Categorical Cross-entropy
function, which is a setting widely used for classification.

IV. RESULTS AND DISCUSSION
A. DATASET
While using skin analyzer device [32], we produced an
image dataset called FiSC Dataset consisting of 2800 images.
The images were human-labeled according to Fitzpatrick
scale standards and validated by domain experts. Based
on Scale AI’s dynamic consensus approach, two annotators
label the Fitzpatrick skin type of each image. Some sample-
labeled images of the dataset are shown in Fig. 3. The
dataset includes a diverse range of images collected from
candidates spanningmultiple ethnic groups including Eastern
Asians, Southeastern Asians, Caucasians, Hispanics, and
South Africans using the Skin Analyzer device.

The labeled images for each phototype category were
distributed in the following way: F1 – 1507 samples, F2
– 619 samples, F3 – 307 samples, F4 – 143 samples,
F5 – 24 samples, and F6 – 137 samples, as shown in
Table 3. We used data augmentation techniques to balance
the categories since there are a few images in Fitzpatrick
phototypes F5 and F6, thus, we round the number of samples
to 1500 samples per phototype. The augmentation techniques
used are: flip top bottom, flip left-right, and rotate 180◦.
We did not use zoom since the device already has an optic
zoom of 20X and this can distort the image quality. In this
study, the augmented dataset is called FiSC Aug-Dataset.

B. EXPERIMENTAL SETTING
All of the experiments were carried out on a machine with
an Intel(R) Core(TM) i7 processor, 16.0 GB of RAM, and
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FIGURE 6. rLH extracted from dataset, plot showing the stratum for each
class.

TABLE 5. rLH accuracy/k fold = 5 on FiSC dataset.

TABLE 6. rLH accuracy /k fold = 5 on FiSC-aug dataset.

TABLE 7. All features accuracy/k fold = 5 on FiSC dataset.

TABLE 8. All features accuracy/k fold = 5 on FiSC-aug dataset.

Windows 10 64-bit operating system along with a GPU.
We used Python and TensorFlow over Keras [44] for the
proposed algorithm implementation, which is a complete
environment for ML and deep learning algorithms. For
evaluating theML and deep learning algorithms, we set cross-

validation splitting over the dataset into five stratified folds
for training and testing the ML classifiers described in the
previous section and executed in 30 rounds. For reflection
removal, we set empirically the discrimination criteria for
the static test δ > 200, and for the variable test, we set
the constant C = 1.15 and obtain δ dynamically per image
from (10), this dynamical δ, we call ‘‘Variable δ’’ in the
experimental results presentation.

C. RLH FEATURES EVALUATION
In our first experiments, we evaluated the feature selection.
We selected skin-related features from the color spaces
studied [22], which uses Chroma, L*, and Hue channels
to explain the color differences over these CS components.
We use the Red channel instead of Chroma because Chroma
is a component that sub-samples RGB CS. Also, the Red
channel is empirically the most representative channel for
human skin. The selected features extracted from images are
represented by the feature vector X = [r,L,H ]. We plotted
the dataset for visualizing the stratum of each class presented
in Fig. 6. The accuracy results of the extracted features are
described in Table 5 and 6 using FiSC Dataset and FiSC Aug-
Dataset, respectively. As it is seen in the Table 5 and 6, the
accuracy reaches over 90% in some classifiers. However, with
these experiments we cannot prove that [rLH] features are the
most influencing features. Moreover the experiments over the
full 9D feature vector [r,g, b, L, A, B, H, S, V] show that the
accuracy is not near to the accuracy shown using the same
classifiers with it. The results for FiSC and FiSC-Aug datasets
are described in Table 7 and 8 respectively.

TABLE 9. Covariance matrix raw FiSC dataset.

D. INFLUENCING FEATURES IDENTIFICATION
To find the most influencing features aiming for a dimen-
sionality reduction, we used the proposed feature engineering
approach to identify the potential influencing features
without affecting the accuracy. The covariance matrix among
the elements in the 9D feature vector is calculated as in (13)
over the raw dataset, to check which representative features
on the feature vector maximize the variance. The results
in the covariance matrix that have the maximum variance
are on RGB CS features as shown in Table 9. Having
the potential influencing features that are the values that
maximize the variance, we normalized the dataset. Over this
normalized dataset we calculated the eigenvalues matrix with
(15), and the results are as shown in Table 10. To prepare
the dataset, we normalized the feature channels (Table 4) in
the raw dataset. Therefore, we will use two terms for the
FiSC Dataset, i.e., Normalized FiSC Dataset and Raw FiSC
Dataset.
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FIGURE 7. PCA normalized dataset plot showing the stratum for each
class.

TABLE 10. Eigenvalues normalized FiSC dataset.

TABLE 11. PCA eigenvalues (EV) and variance (V).

Then we analyzed the 9D feature vector of the normalized
dataset using PCA and having the eigenvalues and covariance
matrix in Table 11, we found that the eigenvalues from PCA
components are the same from RGB CS. By definition PCA
makes projections using linear transformations over the data
into a new coordinate system through eigendecomposition
of the covariance matrix. It can be inferred through this
definition that the eigenvalues that maximize the variance
are the ones representing the most influencing features.
Since eigenvalues are the same for PCA over the normalized
dataset in Table 11 and normalized dataset for RGB CS in
Table 9, it means that they have exactly the same minimal
and characteristic polynomials. Thus, we have identified the
most influencing features and then it is safe to perform
a dimensionality reduction. These influencing features are
clustered in what we call the dominant areas as illustrated in
Fig. 7 for PCA.

E. INFLUENCING FEATURES EVALUATION
We evaluated using the feature vector X = [r g b] which
contains the most influencing features using the same settings
of rLH and the results are shown in Table 12 and 13. The
results are clearly near the resultant values of the 9D feature
vector over the classifiers.

F. COMPARISON WITH STATE-OF-THE-ART
With the unified value per channel, we selected the input
values from LAB CS for testing ITA, and input these values
in the same way as [10] and [12], the results of applying ITA

TABLE 12. rgb accuracy. k fold = 5 on FiSC dataset.

TABLE 13. rgb accuracy. k fold = 5 on FiSC-aug dataset.

TABLE 14. Comparison with controlled environment dataset. NFA (No
Filter Augmented), δv A (Variable δ Augmented).

TABLE 15. 30 rounds ML-FiSC KNN mean results varying number of K
folds with number of test results (NTR).

to our dataset are presented in Table 14 where we compare
our results too. Since our dataset is different than the one
used [10] and [12], we understand that results may vary
in some degree. Groh Empirical with our dataset without
augmentation performed similar accuracy as the reported in
their work, however in their work they presented this results
with one-tone difference (±1 class) relaxation and we are
performing our experiments without relaxation. Along with
the differences in datasets, Krishnapriya et. al. [12] accuracy
is poor due to the adaption of ITA parameters to their full
faces dataset, and they use color-corrected images to classify
the Fitzpatrick skin tone. We selected the KNN classifier to
do this comparison since it is the best result for augmented
data having an accuracy of 97% over the augmented dataset.
This high accuracy can be explained due to the nature of the
algorithm, when we identified the most influencing features,
we also aimed to identify the dominant areas, as seen in
Fig. 8 each dominant area is clustered and has the strata
well defined, that validates the effectiveness of our filter
and reflection removal techniques. When KNN searches for
the nearest neighbor in clustered data, the accuracy is high.
To verify that the model is not overfitting we performed an
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extra experiment varying the number of k folds having the
results presented in Table 15.

FIGURE 8. [rgb] extracted from dataset, a plot showing the stratum for
each class.

V. IMPLICATIONS AND LIMITATIONS
Our proposed methodology (FiSC) presents several signifi-
cant outcomes and implications:

A. NOVEL CLASSIFICATION TECHNIQUE
FiSC introduces an innovative approach to Fitzpatrick
scale-based image classification, leveraging state-of-the-
art machine learning algorithms. By utilizing specialized
filters to detect and remove skin surface imperfections,
FiSC achieves enhanced measurement accuracy compared to
existing methods.

B. SKIN FILTER AND REFLECTION REMOVAL
The development of a skin filter capable of accurately
identifying skin surfaces in images, even in the presence
of darker pixels caused by skin texture, addresses a critical
challenge in image-based skin tone classification. Addi-
tionally, the novel reflection removal technique effectively
mitigates biases introduced by skin sebum reflections, further
improving classification accuracy.

C. FEATURE ENGINEERING AND DIMENSIONALITY
REDUCTION
Through comprehensive feature engineering and dimension-
ality reduction techniques, FiSC identifies the most influen-
tial features for Fitzpatrick scale classification. This approach
enhances the interpretability of classification results and
facilitates more effective utilization of machine learning
models.

D. EXPERIMENTAL VALIDATION
Extensive experiments conducted using the FiSC frame-
work demonstrate significant improvements in classification
accuracy, achieving up to 97% accuracy across various
skin types. These results underscore the efficacy of the

proposed methodology in accurately classifying skin tones in
controlled environments.

The limitation of our study stems from constraints in data
acquisition. The FiSC framework relies on image datasets
obtained via specialized skin analyzer devices, potentially
restricting the availability and diversity of training data.
Further efforts are needed to expand the dataset, ensuring
comprehensive coverage of diverse skin types and environ-
mental conditions. While FiSC demonstrates commendable
accuracy in controlled settings, its performance in real-
world clinical scenarios with variable lighting conditions
and image quality requires evaluation. Additional validation
studies across diverse clinical settings are imperative to
assess the robustness and applicability of the proposed
methodology. Nonetheless, the methodology can potentially
be replicated using general datasets containing high-quality
images, provided suitable filters for accurate skin detection
are employed.

VI. CONCLUSION AND FUTURE WORK
In this study, we introduced the FiSC (Fitzpatrick Scale
Classification) framework, providing a robust and accurate
solution for Fitzpatrick scale-based skin tone classification.
Our approach enhances measurement accuracy by applying
specialized filters to remove skin surface attributes, such
as wrinkles and pores, using a controlled dataset from
a professional skin analyzer device. We developed a 9-
dimensional feature vector and employed feature engineering
to identify the most influential features and dominant
areas, enabling dimensionality reduction. This reduction
resulted in lighter inputs and decreased complexity for
Machine Learning (ML) and Deep Learning (DL) models
by minimizing parameters. Extensive classification experi-
ments with various ML algorithms demonstrated that FiSC
achieved up to 97% accuracy, surpassing existing state-of-
the-art methods. Additionally, our validation showed that
the reduced feature set maintained performance comparable
to the full nine-dimensional vector, confirming the effec-
tiveness of our dimensionality reduction strategy. These
findings have significant implications for applications in
cosmetic product development, personalized skincare, and
improving the fairness and accuracy of computer vision
algorithms across diverse populations. By enhancing skin
tone classification accuracy and reducing model complexity,
the FiSC framework contributes to more inclusive and
effective technological solutions in the healthcare and beauty
industries.

In future work, we will focus on addressing the current
limitations of our study to further enhance the applicability
and effectiveness of the FiSC framework in real-world
healthcare settings. Additionally, we plan to apply our
methodology to other general datasets to identify influencing
features and dominant areas, thereby optimizing dimensional
reduction and improving the efficiency and accuracy of
Fitzpatrick scale classification.
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ACRONYMS
AHE Adaptive Histogram Equalisation.
CLAHE Contrast Limited Adaptive Histogram

Equalization.
CS Color Space.
DP Dermo Prime.
FiSC Fitzpatrick Scale based Classification utiliz-

ing ML techniques.
HSV Hue, Saturation, and Value.
ITA Individual Typology Angle.
LAB CIELAB.
ML Machine Learning.
PCA Principal Component Analysis.
PI Pigmentation Index.
ROI Region of Interest.
SPAD Single-photon Avalanche Diode.
STM Skin Tone Meter.
UV Ultraviolet.
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