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Hardening Interpretable Deep Learning Systems:
Investigating Adversarial Threats and Defenses

Eldor Abdukhamidov , Mohammed Abuhamad , Simon S. Woo , Eric Chan-Tin , and Tamer Abuhmed

Abstract—Deep learning methods have gained increasing atten-
tion in various applications due to their outstanding performance.
For exploring how this high performance relates to the proper use of
data artifacts and the accurate problem formulation of a given task,
interpretation models have become a crucial component in develop-
ing deep learning-based systems. Interpretation models enable the
understanding of the inner workings of deep learning models and
offer a sense of security in detecting the misuse of artifacts in the
input data. Similar to prediction models, interpretation models are
also susceptible to adversarial inputs. This work introduces two
attacks, AdvEdge and AdvEdge+, which deceive both the target
deep learning model and the coupled interpretation model. We
assess the effectiveness of proposed attacks against four deep learn-
ing model architectures coupled with four interpretation models
that represent different categories of interpretation models. Our
experiments include the implementation of attacks using various
attack frameworks. We also explore the attack resilience against
three general defense mechanisms and potential countermeasures.
Our analysis shows the effectiveness of our attacks in terms of
deceiving the deep learning models and their interpreters, and
highlights insights to improve and circumvent the attacks.

Index Terms—Adversarial images, deep learning, security,
transferability, interpretability.

I. INTRODUCTION

D EEP Neural Networks (DNNs) have been increasingly
incorporated into a wide range of applications due to

their high predictive accuracy in various machine learning tasks,
including image classification [2], and natural language process-
ing [3]. Despite these extraordinary achievements, it is not yet
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Fig. 1. Examples of (a) benign, (b) standard adversarial, and (c) dual adver-
sarial images together with their interpretations based on the ResNet-50 model
and CAM interpreter.

entirely evident how DNN models make certain decisions due
to their complex network architecture. Additionally, the sus-
ceptibility to adversarial manipulations is another shortcoming
of DNN models. For example, adversarial examples, i.e., mali-
ciously crafted inputs, can lead to unexpected model behavior
during decision making.

Numerous studies have been conducted to enhance the trust-
worthiness, reliability, and transparency of DNNs by providing
interpretability at different levels (e.g., overall model [4], [5] and
instance levels [6], [7]). Generally, interpretation is believed to
aid in understanding the internal structure of models to debug
them and identify possible manipulations. For example, Fig.
1(a) shows the causal relationship of attribution maps and im-
ages based on the prediction output. Fig. 1(b) shows successful
adversarial examples that produce interpretation maps different
from benign ones.

In the workflow of an interpretable deep learning system,
a classifier (DNN model) and its coupled interpreter (inter-
pretation model) construct interpretable deep learning systems
(IDLS). IDLSes offer additional reliability and security in
human-assisted decision-making processes, since experts can
determine if an interpretation map fits the prediction of the
DNN models. However, interpretability is also vulnerable to
adversarial modification. It is both possible and practical to
create an adversarial input to fool the target DNN model and its
coupled interpretation model simultaneously. Fig. 1(c) shows
dual adversarial examples resulting from targeting the DNN
model and the coupled interpreter. Dual adversarial examples
generate interpretation maps indistinguishable from their benign
interpretation maps.
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In this work, we proposed optimized adversarial attacks that
target IDLSes, i.e., can fool the prediction model and the coupled
interpreter simultaneously. We call these attacks AdvEdge and
AdvEdge+. In particular, the attacks exploit the image’s edge
information to enable perturbation to be attached to the edges of
the image areas spotlighted by the interpretation model’s attri-
bution map. This allows for a far more stealthy adversarial attack
since the crafted adversarial inputs are difficult to identify, even
with the interpretation and human involvement. Furthermore, the
proposed attacks generate effective adversarial examples with
minimal perturbation.

Our Contribution: This work contributes to the security of
IDLes. In particular, our contributions are as follows:
� We propose two novel interpretation-guided attacks against

IDLSes, namely, AdvEdge and AdvEdge+, utilizing edge
information to enhance the stealthiness of attacks. We
evaluate attacks against various DNNs and interpreters
(e.g., Grad, CAM, RTS, and MASK).

� We implement our attacks on three frameworks (i.e., PGD,
C&W, and StAdv) and evaluate the performance using
ImageNet, CIFAR-100, and CIFAR-10 datasets.

� We conduct an analysis of the transferability of adversarial
samples across different interpreters.

� We demonstrate the attack persistence against common
defenses and present a novel defense method that utilizes
multiple interpreters to identify adversarial samples.

Organization: The rest of the paper is organized as follows:
Section II highlights the literature; Section III presents funda-
mental concepts; Section IV provides a description of the pro-
posed attacks; Section V shows the experiments and evaluation;
Section VI presents the discussion; and Section VII concludes
the paper.

II. RELATED WORK

Interpretability: Interpretability for models can be derived us-
ing various methods: back-propagation [8], intermediate repre-
sentations [9], [10], input perturbation [7], and meta-models [6].
Interpretability can contribute to system security in the decision-
making process involving an expert who can inspect/verify the
attribution maps contributing to certain outputs. The interpreta-
tion of adversarial inputs is expected to differ remarkably from
the interpretation of their benign inputs. There have been many
works on interpretability to debug DNNs [11] and to identify
adversarial inputs [12], [13].

A study [14] shows the feasibility of manipulating IDLSes. It
offers a novel attacking method to fool DNN models and their
corresponding interpretation models simultaneously, demon-
strating that improved interpretability guarantees only limited
security and protection. In [15], the authors investigate the
privacy risks associated with model explanations to infer sen-
sitive attributes of an input. The study highlights that model
explanations represent a notable attack vector, posing a tangible
risk to data privacy. In a recent study [16], a backdoor attack was
proposed that modifies DNN saliency maps, posing a security
threat to interpretation methods. The attack depends on a trigger
pattern and cannot be detected by current defenses. In this paper,

we introduce two optimized versions of the ADV2 [14] attack
targeting IDLSes.

Transferability: Transferability is an interesting property of
adversarial attacks [17]: e.g., adversarial inputs generated for
a specific DNN can be effective against other DNNs. This
property is used in black-box scenarios [18]: e.g., generating
adversarial inputs based on known white-box DNN and applying
them against the target black-box DNN [19], [20]. In a research
study [21], a technique that perturbs the hidden layers of a
model is proposed to improve the transferability of adversarial
inputs. Another work [22] applies differentiable transformations
to input samples for enhanced transferability. In this work,
we investigate the transferability of adversarial inputs across
different interpreters.

III. FUNDAMENTAL CONCEPTS

This section introduces common concepts and terms used in
this study. We note that even though this work focuses on IDLSes
of classification tasks, such as image classification, the attacks
can be generalized to other modeling tasks.

Let a classifier f(x) = y ∈ Y (i.e., DNN classifier f ) that
assigns a sample input (x) to a category (y) from a collection of
predetermined categories (Y ). Let an interpreter g(x; f) = m
(i.e., interpretation model g) produce an interpretation map (m)
that highlights the feature importance in the sample (x) based on
the prediction of the model (f ). The value of the i-th component
in m (i.e., m[i]) represents the importance of the i-th component
in the sample x (i.e., x[i])).

From this perspective, we consider that model interpretation
can be obtained by two basic methods: ➊ Post-hoc interpreta-
tion: This can be accomplished by adjusting the complexity of
DNNs or by employing post-training techniques. This strategy
requires the development of a new model to provide interpre-
tations of the present model [4], [5], [6], [7], [23]. ➋ Intrinsic
interpretation: This type of interpretability can be produced by
developing self-interpretable DNNs, which intrinsically embed
the interpretability feature into their structures [4], [5]. In this
study, we focus on the first method of interpretability, in which
an interpreter (g) obtains an attribution map m of how a DNN
f identifies the sample x.

In a typical adversarial setting, DNN models are vulnerable to
adversarial examples [17], [24]. More specifically, an adversarial
input (x̂) can be generated by manipulating the benign input (x)
using one of the well-known attacks (i.e., PGD [25], BIM [26],
C&W [27], StAdv [28], etc.) to make the model misclssify x̂
to an output f(x̂) = yt �= f(x). The manipulations, e.g., also
known as adversarial perturbations, are usually bounded by a
norm ball Bε(x) = {‖x̂− x‖∞ ≤ ε}, where ε is the threshold,
to ensure its success and evasiveness.

In this work, we adopt the following three well-known attack
frameworks in our paper:

➊ PGD: A first-order adversarial attack applies a sequence
of project gradient descent on the loss function

x̂(i+1) =
∏
Bε(x)

(
x̂(i) − α. sign(∇x̂�prd(f(x̂

(i)), yt))
)
. (1)
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Here,
∏

is a projection operator, Bε is a norm ball restrained
by a pre-fixed ε, α is a learning rate, x is the benign sample,
x̂(i) is the x̂ at the iteration i, and �prd is a loss function that
calculates the difference between f(x̂) and yt.

➋ C&W. C&W attack framework considers the process of
generating adversarial inputs as an optimization problem of Lp-
norm regarding the distance metric δ with respect to the given
input x, which can be described as

||δ||p =

(
n∑

i=1

|δi|p
)1/p

; δi = x̂i − xi

minimize ||δ||p + c · �(x+ δ) s.t. x+ δ ∈ [0, 1]n, (2)

where δ is the perturbation added to x, � is a loss function to
solve the optimization problem using gradient descent, and c is
a constant. We utilize L2-norm based C&W in this work.

➌ StAdv: The attack is based on the spatial transforma-
tion of pixels to improve the perceptual quality of adversar-
ial samples. The per-pixel flow is expressed as the flow vec-
tor: ri := (Δu(i),Δv(i)), specifically, Δu(i) = u

(i)
x − u

(i)
x̂ and

Δv(i) = v
(i)
x − v

(i)
x̂ , where (u(i)

x , v
(i)
x ) and (u

(i)
x̂ , v

(i)
x̂ ) represent

the 2D coordinates of the ith pixel of x and x̂. Obtaining the
pixel values of the adversarial input is described as

x̂(i) =
∑

q∈N ([u
(i)
x ,v

(i)
x ])

x(q)(1− |u(i)
x − u(q)

x |)(1− |v(i)x − v(q)x |),

(3)

where N ([u
(i)
x , v

(i)
x ]) represents the indices of the four-pixel

neighbors (top/bottom-left/right) of (u(i)
x , v

(i)
x ). The following

two loss functions are used to formulate the search of adversarial
deformations as an optimization problem, and they are described
as follows:

�prd(x, r) := max

(
max
i�=t

(fi(x+ r))− ft(x+ r), κ

)
,

�flow(r) :=
∑
p

∑
q∈N (p)

(||Δu(p) −Δu(q)||2 + ||Δv(p)

−Δv(q)||2
) 1

2 ,

where κ is the misclassification confidence, p is an arbitrary
pixel and q ∈ N (p) represents the neighbors of the pixel p.

The optimization problem is balanced with a factor of λ

between the two losses to encourage the adversarial input to be
classified while preserving high perceptual quality, as follows:

min
r

{�prd(x, r) + λ�flow(r)} . (4)

IV. ADVEDGE ATTACK

The section provides the details of implementing the proposed
attacks against four different types of interpreters.

A. Threat Model

Adversarial Objective: The main aim of AdvEdge and
AdvEdge+ is to fool the target IDLS (i.e., both classifier and

interpreter) by introducing stealthy adversarial perturbations
using edge information of input images (i.e., adding noise to
edges). The goal is to maximize the rate of misclassification
while ensuring that adversarial perturbations remain impercep-
tible and do not alter the attribution of the original image. In
general, there are two reasons for applying perturbations to the
edges of images: ➊ Edge Sensitivity: DNNs are usually sensitive
to edge information, and altering these edges can contribute to
fooling DNNs. ➋ Stealthiness: Generally, changes in edges (i.e.,
significant transitions of colors or intensities) are less noticeable
to humans than changes in smoother “uniform” regions (i.e.,
large areas of the same color or texture), making the attack
less perceptible. Moreover, limiting perturbations to edges could
minimize the rate of perturbations that achieve the adversarial
objective (see Fig. 5 and Appendix V-D), available online.

Adversarial Capabilities: We explore different adversarial
capabilities for AdvEdge and AdvEdge+ attacks as follows:

➊ White-box scenario in which the adversary has full knowl-
edge and access to the victim model and its interpreter. This
provides the attacker with the highest level of capability to
generate adversarial perturbations for maximum effect.

➋ Gray-box scenario in which the adversary has full access
to the victim classifier, but no access or knowledge about the
interpreter. The attacker uses the transferability property of
interpretations to mislead the target interpreter.

B. Attack Definition

The adversarial goal is achieved by creating an adversarial
sample x̂ that meets the following conditions: 1) A DNN f
misclassifies the adversarial sample x̂ to yt: f(x̂) = yt so that
f(x̂) = yt �= f(x). 2) The adversarial sample x̂ causes the inter-
pretation model g to generate the target interpretation map mt:
g(x̂; f) ≈ g(x; f). 3) The adversarial and benign samples are
indistinguishable, i.e., constraining the noise to the edges within
the image.

The proposed approach aims to discover a minimal perturba-
tion so that adversarial examples satisfy these conditions. The
optimization framework to characterize the attack is

min
x̂

: Δ(x̂, x) s.t.

{
f(x̂) = yt
g(x̂; f) = mt

.

This can be reformulated to be more appropriate for optimiza-
tion as follows:

min
x̂

: �prd(f(x̂), yt) + λ. �int(g(x̂; f),mt) s.t. Δ(x̂, x) ≤ ε,

(5)

where �prd and �int denote the classification loss as in (1) and the
interpretation loss, respectively. �int quantifies the dissimilarity
between adversarial and benign attribution maps, i.e., g(x̂; f)
and mt = g(x; f), respectively. The hyperparameter λ is used
to balance the two components (i.e., �prd and �int). We build (5)
based on the PGD framework, and it can be applied to the other
attack frameworks with few modifications (i.e., considering (2)
and (4)) as follows:

min
x̂

: ||δ||p + c �prd(f(x̂), yt) + λ. �int(g(x̂; f),mt) (6)
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min
x̂

: �prd(f(x̂), yt) + λ. �int(g(x̂; f),mt) + λ. �flow(r).

(7)

The terms are defined as

�prd(f(x̂), yt) = − log(fyt
(x̂)),

Δ(x̂, x) = ‖ x̂− x ‖∞, and

�int(g(x̂; f),mt) = ‖g(x̂; f)−mt‖22.
In PGD, the perturbation in (1) is controlled as

x̂(i+1) =
∏
Bε(x)

(
x̂(i) −Nw α. sign(∇x̂�adv(x̂

(i)))
)
. (8)

For C&W and StAdv attack frameworks, we control the
perturbation in (2) and (4) as follows:

δ = Nw (x̂− x), (9)

r := Nw (Δu,Δv), (10)

where, Nw is the perturbation method that determines both the
amount and position of noise injected to the sample considering
the edge weightsw of the benign sample. The entire loss equation
(i.e., (5)) is represented as �adv .

AdvEdge: In (8), we use the Nw term to optimize the position
and amount of applied perturbation. In AdvEdge, we limit the
added perturbation to the edges of the sample that overlap
with the interpretation map provided by the interpreter. In other
words, we learn the critical parts of a given input sample based
on the overall loss (i.e., DNN loss and interpretation model loss)
and then inject noise into the edges of those areas. We define the
edges based on the edge weights acquired by applying the Sobel
filter [29]) to the sample image.

A pixel-wise edge weight matrix is defined as E : e → Rh×w

for an image of height h and width w using a typical edge
extraction method (e.g., Sobel filter in our experiments). These
weights are applied to the sign of the gradient update (PGD
framework) as follows: E(x)⊗ α. sign(∇x̂�adv(x̂

(i))), where
the operator ⊗ represents the Hadamard product. By doing so,
the attack amplifies the noise on the edges while reducing or
constricting its presence elsewhere in the image.

Considering a straightforward application of the edge weight
matrix, i.e., Nw = E(x), we can rewrite (8), (9), and (10)
as: x̂(i+1) =

∏
Bε(x)

(x̂(i) − E(x)α. sign(∇x̂�adv(x̂
(i)))), δ =

E(x)× (x̂− x), and r := E(x) (Δu,Δv), respectively.
AdvEdge+: This technique, like AdvEdge, leverages the

edge weights to optimize the perturbation. Instead of adjusting
the noise based on the edge weights in the attack, we apply
the perturbations only on defined edges that pass a certain
threshold. This is performed by a binarization operation (e.g.,
bin(Eϕ(x) → ei := {0 if ei ≤ ϕ; 1 otherwise ∀ i})) to obtain a
binary edge matrix Eϕ : e → [0, 1]h×w, where h and w are the
height and width of an input, respectively. The hyperparameterϕ
sets the threshold for binarizing edge weights and can be adjusted
according to the attack objective. The rest of the implementation
is similar to AdvEdge, e.g., the PGD attack can be formulated as:
Eϕ(x)⊗ α. sign(∇x̂�adv(x̂

(i))). This enables perturbations to
be applied only on the edges. Given the constraint on the locality

and amount of perturbation, the threshold ϕ is adjusted to 0.1 to
improve the effectiveness. Source code for the implementation
can be found in the following link: https:// github.com/ InfoLab-
SKKU/ AdvEdge-Attack.

The implementation against representatives of four categories
of interpreters is discussed in the following subsections.

C. Backpropagation-Guided Interpretation

This category of interpretation models computes the gradient
of a DNN model’s prediction with respect to the provided sample
input. This highlights the significance of each feature in the input
sample. Larger values suggest higher importance of the features
to the model prediction. In this paper, we discuss gradient
saliency (Grad) [23] as an example of backpropagation-guided
interpretation. The Grad interpreter estimates an attribution map
m given the model f and input xwith a class y as:m = |∂fy(x)∂x |.

Looking for the optimal adversarial sample x̂ for Grad-based
IDLSes through a sequence of gradient descent updates (as
in applying (8)) is ineffective since DNN models with ReLU
activation functions cause the Hessian matrix computation result
to be all-zero. The challenge can be resolved by computing the
smoothed value of the gradient of ReLU (r(z)) using a function
h(z) with the following formula:

h(z) �
{
(z +

√
z2 + τ)′ = 1 + z√

z2+τ
for z < 0

(
√
z2 + τ)′ = z√

z2+τ
for z ≥ 0

.

Here, τ is a constant parameter, and h(z) approximates the
values of r(z) and its gradients are non-zero. Another alternative
is to use the sigmoid function (σ(z) = 1

1+e−z ). We note that
this method can be applied to other backpropagation-guided
interpreters (e.g., LRP [30], SmoothGrad [31]) as they are based
on gradient-centric formulations [32].

D. Representation-Guided Interpretation

This type of interpreter extracts feature maps from interme-
diate layers of DNN to provide attribution maps. Representative
of representation-guided interpretation in this study is Class
Activation Map (CAM) [10]. CAM performs global average
pooling on the convolutional feature maps and utilizes the output
as features for a fully-connected layer for the model prediction.
The significance of the sample input areas can be determined by
projecting the output layer weights back onto the convolutional
feature maps.

Specifically, letai(k, l)be the activation of channel i in the last
convolutional layer at (k, l) spatial location, and

∑
k,l ai(k, l) as

the result of global average pooling. The activation map mc for
an input x and class c is given as mc(x, y) =

∑
i wi,cai(k, l),

where c is cth output of the linear layer and wi,c is the weight
corresponding to class c for ith channel. We construct m by
extracting and concatenating interpretation maps from f up to
the final convolutional layer and a fully connected layer, similar
to the work of [14]. We exploit the interpretation model by
utilizing gradient descent updates to find the optimal x̂ as in (8).
The attack can extend to various interpreters of this category
(e.g., Grad-CAM [9]).
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E. Model-Guided Interpretation

By masking significant areas in any input, a model-guided
interpretation model is trained to predict the attribution map
directly in a single forward pass. We consider Real-Time Image
Saliency (RTS) [6] for this category. RTS generates the attribu-
tion map m for any given class c and input x by resolving the
following problem:

min
m

: λ1rtv(m) + λ2rav(m)

− log(fc(Φ(x;m)))

+ λ3fc(Φ(x; 1−m))λ4 s.t. 0 ≤ m ≤ 1. (11)

Here, the regularizers {λi}4i=1 balance the involved factors,
and rav(m) represents the average value of m. The rtv(m)
expresses the variation of m that enforces mask smoothness,
and it is defined simply as: rtv(m) =

∑
i,j(mi,j −mi,j+1)

2 +∑
i,j(mi,j −mi+1,j)

2. Furthermore, Φ is the operator that uses
m as a mask to blend x with random color noise and Gaussian
blur, and it is defined as: Φ(x,m) = x⊗m+ r ⊗ (1−m),
where ⊗ denotes the Hadamard product, and r is an alternative
image. For applying Φ, r can be chosen to be a highly blurred
version of in the inputx. In general, (11) finds the important parts
of x in terms of which f predicts f(x) with high confidence.

During the inference, computing (11) is expensive. Therefore,
RTS trains a DNN to predict the attribution map for any input so
that RTS does not have to access the DNN f after training. This
can be achieved by composing a ResNet [2], a pre-trained model
as an encoder to extract feature maps of the given inputs and a
U-Net [33] as the masking model which is trained to optimize the
framework in (11). For this work, we consider the composition
of the encoder and masking model as the interpreter g.

Attacking RTS by employing (8), (9) or (10) directly, has
been found to be inefficient for finding the optimal adversarial
samples [14]. The main reason for this is that the interpre-
tation model uses both the masking model and the encoder
(enc(·)). To address this issue, we utilize an additional loss
term �enc(enc(x̂), enc(yt)) to (5), (6) and (7) to compute the
difference between the encoder’s outcome with the adversarial
sample input x̂ and the target class yt. Then, we perform a series
of gradient descent updates to choose the optimal adversarial
sample input x̂.

F. Perturbation-Guided Interpretation

This type of interpretation model investigates interpretation
maps by introducing a minimal amount of noise to the input and
evaluating the changes in the model prediction. We consider
MASK [7] to be the class representative.

MASK identifies the attribution map for the given input x
by affecting the maximally informative input regions. Specifi-
cally, the model f(x) generates a vector of scores for distinct
hypotheses about input x (e.g., as a softmax probability layer
in a DNN), then MASK explores the smallest mask m to make
the model performance drop significantly: i.e., fy(Φ(x;m)) �
fy(x). We note that the mask m in this scenario is binary, where
m[i] = 0 or 1 to indicate whether the i-th feature is replaced with

Gaussian noise. The optimal mask can be obtained by solving
the following problem:

min
m

: fy(Φ(x;m)) + λ. ‖1−m‖1 s.t. 0 ≤ m ≤ 1, (12)

where λ encourages most of the mask to be sparse. By solving
the (12), we find the most informative and necessary regions of
the input x with reference to the model prediction f(x).

We cannot directly advance (5), (6) and (7) with (8), (9) and
(10), respectively, since the interpretation model g is built as an
optimization method.

A bi-level optimization framework [14] can be used to
solve this problem. The loss function is rewritten as follows:
�adv(x,m) � �prd(f(x), yt) + λ. �int(m,mt) by including be-
nign attribution mapm as a new variable. Let �map(m;x) denote
the object function of (12) and m∗(x) = argminm : �map(m;x)
be the attribution map generated by MASK for the inputx. Then,
we have the following framework:

min
x

: �adv(x,m∗(x)) s.t. m∗(x) = argmin
m

�map(m;x).

For every update on the inputx, solving this bi-level optimiza-
tion is expensive. As a solution to the problem, [14] proposed
an approximate iterative procedure to optimize x and the mask
m by alternating between �adv and �map. Briefly, given x(i−1)

at the ith iteration, the attribution map m(i) is computed by
updating m(i−1) in �map(m

(i−1);x(i−1)), then m(i) is fixed and
x(i) is attained by reducing �adv after a gradient descent step
with respect to m(i). To update x(i), the objective function is
formulated as follows:

�adv

(
x(i−1),m(i) − α.∇m. �map(m

(i);x(i−1))
)
, (13)

where, α is the learning rate.

V. EXPERIMENTS AND EVALUATION

A. Experimental Settings

AdvEdge and AdvEdge+ are built based on the PGD, C&W,
and StAdv attack frameworks. We use the values α = 1/255
that is mentioned in (13), and ε = 0.031 as the perturbation
threshold from the prior work [14]. �∞ is used to calculate the
perturbation proportion. To improve the efficiency of the attack,
we use a method that adds noise to the edges of the images with
a fixed number of iterations (#iterations = 300).

Optimization Steps: Zero gradients of the prediction loss
hinder finding the desired result with correct interpretation
(Grad). To address this issue, a label smoothing strategy using
cross-entropy is used. The approach samples the prediction loss
using a uniform distribution U(1− ρ, 1) and the value of ρ is
substantially decreased during the attack process. Considering
yc =

1−yt

|Y |−1 , we derive �prd(f(x), yt) = −∑c∈Y yc log fc(x).
In solving (13), multiple steps of gradient descent are applied

to update m and calculate m∗(x) for faster convergence. Addi-
tionally, the average gradient is used to update m and support
stable optimization. More precisely, at the ith iteration with
multistep gradient descent, {m(i)

j } is the sequence of maps.
To calculate the gradient to update m, the interpretation loss
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∑
j ‖m(i)

j −mt‖22 is used. To improve convergence, the learn-
ing rate is also dynamically changed by applying the Adam
optimizer to calculate the optimal learning rate at each iteration.
For stable learning, x is updated in two steps: ➊ updating x
based on prediction loss �prd and interpretation loss �int; ➋, the
confidence score is checked if it is still above a specific threshold
(i.e., 0.9 for our experiment) after perturbation by searching
the largest step size (i.e., maximum 0.08 in our case) in the
adversarial search space.

Since MASK is considered an optimization procedure, unlike
other categories of interpreters, we adopt additional steps to find
the optimal adversarial sample. Update of the estimate of the
attribution map in terms of �map results in a significant deviation
from the original MASK map as the number of steps increases in
the update process. To maintain the effectiveness of the attack,
the generated map is replaced with the map m̂(i) = g(x̂(i); f)
which is the MASK output in terms of the latest adversarial
input at a specific iteration point (e.g., every 50 iterations).
Simultaneously, when the estimated map is replaced by the
algorithm, we reset Adam’s step parameter to have a correct
internal state and decrease the negative impacts on the attack
performance.

Dataset: For our experiment, we use ImageNetV2 Top-
Images [34] dataset, CIFAR-10 and CIFAR-100 datasets [35].
ImageNetV2 is a new test set collected based on the Ima-
geNet benchmark and was mainly published for inference ac-
curacy evaluation. The dataset contains 10,000 images based
on 1,000 different classes that are similar to the classes in the
original ImageNet dataset. All images are cropped to 224 ×
224 pixels, and the pixels are normalized between [0, 1]. As
the test set, we use 1,000 images (a total of 3,000 images)
that are selected randomly from each category and classified
correctly by the classifier f . The CIFAR-10 dataset comprises
60,000 color images, each measuring 32x32, and is organized
into 10 categories, with 6,000 images per category. Out of
these, 50,000 are designated for training and 10,000 for test-
ing. CIFAR-100 is similar to CIFAR-10, but features 100 cat-
egories, each containing 600 images. For each category, 500
images are used for training, while the remaining 100 are for
testing.

Prediction Models: The study employs four state-of-the-art
pre-trained DNN models, ResNet-50 [2], DenseNet-169 [36],
VGG-16 [37], and Inception-V3 [38] which demonstrate
22.85%, 22.08%, 24.40%, and 21.20% top-1 error rates on the
ImageNet dataset, respectively. These DNN models differ in
capacity (50, 169, 41, and 48 layers, respectively) and network
architecture (residual blocks, dense blocks, etc.). The selected
models are popular and extensively employed in a wide range of
applications. Their distinct architectures and capabilities allow
for an evaluation of the suggested attack techniques across
various models, offering a thorough examination of the attacks’
effectiveness and applicability.

Interpretation Models: We explored the attacks against the
Grad [23], CAM [10], RTS [6], and MASK [7] interpreters
as representative of back-propagation-guided, representation-
guided, model-guided, and perturbation-guided interpretation

models, respectively. In our experiment, we employed the in-
terpreters’ original open-source implementation.

Comparison of Attack Approaches: We compare AdvEdge
and AdvEdge+ with ADV2 attack against IDLes. For a fair
comparison, we use the same hyperparameters (e.g., learning
rate, number of iterations, and other experimental settings for all
approaches. We note that comparing our attacks to other recent
attacks against IDLes, e.g., [39], [40], can be infeasible. For
instance, attack [40] operates on tabular datasets while our attack
is implemented specifically for image-based inputs focusing on
edges for perturbation injection. Another relevant work [39]
focuses on manipulating interpretation and training a classifier
while maintaining the accuracy of the output. Since our attack
aims to fool classifiers and interpreters without modifying them,
a direct comparison can be impractical.

Evaluation Metrics: We used several evaluation metrics to
assess the attack success against the used DNN classifiers and
interpretation models. To begin, we use the following metrics to
evaluate the attacks based on misleading DNN models.
� Attack success rate: We calculate the proportion of suc-

cessfully misclassified test inputs to the total number of
test samples, which is calculated as #successful trials

#total trials .
� Misclassification confidence: We check the prediction con-

fidence of the output, which is the probability given to the
class by a DNN model.

Moreover, we assess attacks based on their ability to deceive
the interpretation model. This is achieved by evaluating the
interpretation maps of adversarial samples. This task is chal-
lenging since there is a lack of standard metrics to evaluate the
interpretation maps provided by the interpreters. Therefore, we
use the following metrics:
� Qualitative comparison: We use this measurement to check

whether the results of our approach are perceptually indis-
tinguishable. We qualitatively compare the interpretation
maps of benign and adversarial inputs.

� Lp Measure: We observe the difference between benign
and adversarial attribution maps using the L1 distance. To
this end, the values of the attribution maps are standardized
in the range of [0, 1].

� IoU Test (Intersection-over-Union): This is another quan-
titative metric for determining the similarity of the attri-
bution maps. This metric is commonly used to compare
the prediction outcome with the ground truth: IoU(m) =
|O(m)

⋂
O(m◦)|/|O(m)

⋃
O(m◦)|, wherem is adversar-

ial attribution map and m◦ is the benign attribution map.
O(m) indicates the set of non-zero dimensions in m.

The following metrics are also used to evaluate attacks.
� Structural Similarity (SSIM): The mean structural similar-

ity index [41] between the benign and adversarial samples
is used to calculate the added noise. SSIM measures the
image quality based on its distortion-free reference image.
To calculate the non-similarity rate (also known as the
distance or noise rate), we subtract the SSIM value from
one (noise rate = 1− SSIM).

� Average Time: We calculate the time that is taken to gen-
erate adversarial inputs by the attacks.
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B. Attack Effectiveness Against DNNs

In terms of fooling the target DNN models, we first evaluate
AdvEdge and AdvEdge+ along with comparing the results
with the previous work (ADV2 [14]). Since ADV2 applies
PGD, we adapt the attack to C&W and StAdv frameworks for
comparison purposes. The attack success rate of our attacks is
100% when applying PDG, C&W, and StAdv against all models
and interpreters in CIFAR-10 and CIFAR-100. When using the
ImageNet dataset, the attack success rates are 100% for all
attacks when applying PGD, around 98.4%, 98.4%, 98.3% for
ADV2, AdvEdge, AdvEdge+ respectively when applying C&W,
and 97.9%, 97.7%, 97.5% for ADV2, AdvEdge, AdvEdge+,
respectively when applying StAdv framework.

In terms of misclassification confidence (MC), our attacks
outperform existing attacks. In ImageNet, the average MCs
are 0.684 and 0.680 for our attacks compared to ADV2 with
0.671 when applying PGD. When applying C&W, the MCs are
0.689, 0.700, and 0.696 for ADV2, AdvEdge and AdvEdge+,
respectively. In the case of applying StdAdv, the MC for ADV2

is 0.752 compared to our attacks with 0.757 and 0.753. In
CIFAR-100 and CIFAR-10, the average MCs are higher than the
MC of ImageNet. In general, in CIFAR-100, the average MC for
ADV2 is 0.930 in different frameworks, while our AdvEdge and
AdvEdge+ attacks have 0.934 and 0.935.

In CIFAR-10, the MCs are 0.928, 0.933, and 0.933 for ADV2,
AdvEdge, and AdvEdge+, respectively. From the results, we
found that even though the noise rate in our attacks is small, our
attack methods still achieved equal or higher results compared
to the existing attack. This highlights the efficacy of our attack
methods in generating adversarial examples with minimal per-
turbations. Detailed results in terms of attack success rate and
misclassification confidence are shown in Table VII and Table
VIII in Appendix A, available online.

C. Attack Effectiveness Against Interpreters

We assess the capability of AdvEdge and AdvEdge+ attacks
to create interpretation maps that are comparable to benign inter-
pretation maps. Figs. 2 and 9 visualize several examples for Ima-
geNet and CIFAR datasets, respectively, when the ResNet, VGG,
and Inception models are used together with all interpreters. In
the figures, our attacks are compared with the existing attack. We
begin with a qualitative evaluation to observe the similarity of
interpretations produced by adversarial samples (i.e., generated
by AdvEdge and AdvEdge+) and the corresponding benign sam-
ples. By making a qualitative comparison of the interpretations
of benign and adversarial samples, AdvEdge and AdvEdge+

generated interpretations that are visually indistinguishable from
their corresponding benign sample inputs. Compared to ADV2,
both proposed approaches produced interpretation maps that
are similar to benign inputs. Fig. 2 shows some examples of
observed attribution maps obtained using Grad, CAM, RTS, and
MASK. The examples show adversarial interpretations and cor-
responding benign ones. As shown in the figure, the adversarial
and benign attribution maps are highly similar.

Moreover, we employ Lp to quantify the similarity of gen-
erated interpretation maps. Fig. 3 summarizes the results of

Fig. 2. Examples of benign and adversarial attribution maps generated by
Grad, CAM, MASK, and RTS interpreters on the ResNet model. Adversarial
attribution maps are based on ADV2, AdvEdge, and AdvEdge+ attacks.

Fig. 3. L1 adversarial-to-benign distance of attribution maps by different
interpreters on various DNNs using ADV2, AdvEdge, and AdvEdge+ for PGD,
C&W, and stAdv using ImageNet.

L1 measurement using the ImageNet dataset (Note: the results
for CIFAR-10 and CIFAR-100 datasets are in Figs. 10 and 11,
respectively). Compared to ADV2, AdvEdge and AdvEdge+

produce adversarial samples with interpretation maps that are
similar to those obtained for benign samples. The results are
consistent among the interpretation models with all DNNs. We
observe that the efficiency of our attack (against interpretation
models) differs from the interpretation models. Furthermore, as
reflected in the Fig. 3, there are several cases that the attacks
could not achieve low L1 distance (shown as red marks in the
figure), which are known as outliers. We analyze such cases in
Section VI.

The IoU score is another quantitative metric for comparing the
similarity of interpretation maps. We binarized the values of the
interpretation maps to compute the IoU as they are originally real
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Fig. 4. IoU of adversarial and benign attribution maps by different interpreters
on various DNNs using ADV2, AdvEdge, and AdvEdge+ for PGD, C&W, and
stAdv using ImageNet.

values. Fig. 4 displays the IoU scores of attribution maps gener-
ated by ADV2, AdvEdge, and AdvEdge+ adopting PGD, C&W,
and StAdv with regard to four interpreter models on ResNet,
DenseNet, VGG and Inception using the ImageNet dataset. Both
CIFAR-10 and CIFAR-100 share similar characteristics, such
as image size, resolution, and complexity; therefore, they pro-
vide similar results. The results for CIFAR-10 and CIFAR-100
datasets are in Figs. 12 and 13. As shown in the figures, AdvEdge
and AdvEdge+ performed better than ADV2 using different
datasets and models. We observe that AdvEdge and AdvEdge+

achieved significantly better results in terms of the Grad, CAM,
and MASK interpreters. AdvEdge and AdvEdge+ are effective
in deceiving different interpreters. Based on qualitative and
quantitative measures, the attribution maps of adversarial and
benign samples are almost indistinguishable.

D. Adversarial Perturbation Rate

SSIM helps assess the pixel-level perturbation applied by
AdvEdge and AdvEdge+ to generate adversarial samples. We
measure the amount of noise from images’ areas that are not
identical to the original images using SSIM. Fig. 5, Figs. 14 and
15 present the amount of perturbation generated by different
attacks to achieve success in different frameworks using Im-
ageNet, CIFAR-100, and CIFAR-10 datasets, respectively. As
shown, AdvEdge and AdvEdge+ required significantly lower
noise than ADV2 in terms of PGD and C&W. The results become
more obvious when the MASK interpreter is used (PGD attack).
AdvEdge+ generates the least amount of noise to fool the target
DNN model and the MASK interpreter. In terms of StAdv,
limiting the perturbation to only the edges of specific regions
caused the attack to use more noise to have a successful attack
compared to ADV2. This can be more noticeable when a MASK
interpreter is used.

E. Average Time

To compare attacks in terms of time, we calculated the time
required to generate adversarial input. As shown in Table I, the
CAM and RTS interpreters took less time for the generation
process compared to Grad and MASK in general. Among the
four interpreters, MASK is the interpreter that takes considerable
time to achieve a successful attack. In terms of attack frameworks
adopted (PGD, StAdv, and C&W), C&W based on CAM and
MASK is faster, while PGD based on Grad generates adversarial
in a shorter time period. According to the types of attacks, there
is no significant time difference among ADV2, AdvEdge, and
AdvEdge+. In several cases, our attacks took less time to search
in adversarial space (Grad). This can be clearly observed in
the time taken by AdvEdge and AdvEdge+ using StAdv on
the MASK interpreter and ResNet classifier. Due to the small
size of the images in CIFAR-100 and CIFAR-10 datasets, the
time required for an attack is significantly lower compared to
the ImageNet dataset as expected. Generally, CAM and RTS
interpreters require less time to deceive compared to Grad and
MASK interpreters. Similar patterns can be observed across
attack frameworks.

F. Attack Transferability

One interesting property of adversarial inputs is their transfer-
ability. Specifically, an effective adversarial input against a DNN
can be effective against other DNNs [19], [20], [24]. Similarly,
we examine the transferability of our attacks across interpreters.
For a given interpreter g, a set of adversarial inputs generated
against g is randomly selected (i.e., 100 samples) to compute
their attribution maps using the other interpreters g′. Fig. 6
illustrates the attribution maps of adversarial inputs generated
against g (using PGD, C&W, StAdv attacks) and transferred to
the target g′. We provide the example for the PGD attack, as
it adds a considerable amount of noise to the inputs for high
attack success, which is highly likely for the attribution maps to
deviate from their original attribution maps (see Fig. 5). Addi-
tionally, we compare the attribution maps of adversarial inputs
with their corresponding original attribution maps. As shown in
Fig. 6, the transferability of interpretation is valid for attacks,
and it is more obvious in AdvEdge and AdvEdge+ than in
ADV2.

On the quantitative side, Table II shows the L1 distance
between attribution maps of adversarial (ADV2, AdvEdge and
AdvEdge+) and benign samples across different interpreters.
Observe that our methods generate better-quality interpretation
maps on different interpretation models g compared to the
samples produced by ADV2. AdvEdge and AdvEdge+ maintain
high transferability across interpreters for most classes.

G. Attack Effectiveness Against DNNs With Defenses

We conducted experiments to evaluate the effectiveness of
the AdvEdge attack against three different defense techniques:
Median Smoothing (MS), Bit Squeezing (BS), and Adversarial
Training (AT). We chose AdvEdge for this experiment because
the previous tables showed that AdvEdge and AdvEdge+ have
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TABLE I
AVERAGE TIME (IN SECONDS) TO GENERATE AN ADVERSARIAL INPUT BY ADV2, ADVEDGE AND ADVEDGE+ ACROSS DIFFERENT INTERPRETERS AND DNNS

FOR IMAGENET DATASET USING PGD, C&W, AND STADV

TABLE II
L1 ADVERSARIAL-TO-BENIGN DISTANCE USING TRANSFERABILITY OF ADVERSARIAL SAMPLES (ADV2, ADVEDGE, AND ADVEDGE+) ACROSS INTERPRETERS

USING VARIOUS DNNS (ROW/COLUMN AS SOURCE/TARGET INTERPRETERS) FOR IMAGENET
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Fig. 5. Noise rate of adversarial inputs generated by ADV2, AdvEdge, and AdvEdge+ on ResNet-50, DenseNet-169, VGG-16 and Inception-V3 for ImageNet
dataset with three different attack frameworks: PGD, C&W, and StAdv.

Fig. 6. Transferability of adversarial attribution maps of across different interpreters on ResNet-50 using ADV2, AdvEdge, and AdvEdge+ with PGD. The
results show that AdvEdge and AdvEdge+ provide highly similar attribution maps to benign cases.

similar performances. We selected MS, BS, and AT defenses
because of their high performance in the literature. For AT, we
generated adversarial samples using a PGD attack with three
different iterations (50, 100, and 150), resulting in a triple-sized
adversarial training dataset.

Using the ImageNet dataset, our attack success rate was
higher when applying the PGD framework compared to C&W
and StAdv. For example, in MS, the attack success rates were
35.2%, 23.8%, and 14.4% when applying PGD, C&W, and
StAdv, respectively. In BS, our attack performed similarly to
MS. However, in AT, our attack achieved higher attack success
rates: 42.5%, 50.1%, and 33.3%, respectively.

Using the CIFAR-100 and CIFAR-10 datasets, our attack
achieved similar attack success rates, except for AT. In AT,
our attack achieved 55.0%, 55.7%, and 31.9% when applying
PGD, C&W, and StAdv frameworks. From the results, we can
conclude that even though our attack perturbs a very small

amount of noise, the attack success rate is good. Our attack
shows a lower attack success rate in MS and BS because these
defense techniques are designed to filter noise. In the case of
AT, our results are comparatively higher than the results against
MS and BS. Full results are in Appendix D (Table XI), available
online.

VI. DISCUSSION

Our analysis suggests that AdvEdge and AdvEdge+ could
encounter challenges, as shown in Fig. 3, mainly when the
sample is close to a decision boundary or when the interpretation
map is scattered throughout the entire image. These challenges
are also shown in Fig. 7, which shows examples of outliers in
various attack frameworks on ResNet and DenseNet. Our work
suggests new defense strategies and underlines the need for
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TABLE III
RESULTS OF A REAL APPLICATION EXPERIMENT IN WHICH A BLACK-BOX MODEL IS ATTACKED USING THE TRANSFER LEARNING TECHNIQUE

Fig. 7. Outliers of adversarial inputs with interpretations similar to benign.
Grad and MASK are based on StAdv and PGD, respectively (DenseNet-169).
CAM and RTS interpreters are based on StAdv and C&W, respectively (Resnet-
50).

continuous development in this area, keeping pace with advances
in adversarial attack techniques.

A. Real-World Application

As an example of real-life scenarios, we evaluate the attacks
against a brain tumor classification task using the open-source
datasets [42] and [44]. The datasets contain MRI images for four
categories.

Threat Model: To make the scenario seem realistic, we assume
a black-box attack with the target being the black-box IDLS,
from which we can only obtain the model output. The adversary
has neither knowledge nor access to the victim classifier nor
its interpreter. The attacker must rely on general adversarial
techniques and any public information available. The adversarial
samples are crafted without direct knowledge of the model’s
architecture or parameters, making this the most challenging and
realistic attack scenario. We will consider the case to highlight
the seriousness of our attack and the potential implications for
the real world. We assume that the adversary has access to
medical datasets comparable to those the target IDLS uses for
training. This is reasonable because probing the target IDLS
requires certain input specifications.

Attack Implementation: We select two models with different
architectures to serve as target and surrogate models. First, we
train both models, the target and surrogate models, using differ-
ent but similar datasets, (i.e., [42] and [44], respectively). Using
transferability, the surrogate model is used to create adversarial
samples that are then sent to the target model. Table III shows
the performance of the models and AdvEdge against the target

Fig. 8. Example images for the real application case in which adversarial
examples are generated against the surrogate model and tested on the target
model.

model. To increase the transferability of adversarial samples,
we employ a genetic algorithm-based approach [43] to improve
the attack success rate. Using 200 samples, Table III shows that
AdvEdge achieves an attack success rate of 0.90 and an IoU score
of 0.86. Fig. 8 shows example images that generated similar
interpretations with different classification outputs.

B. Potential Countermeasures

Our analysis shows that different interpretation models utilize
different behavioral aspects of DNN models. This suggests the
use of an ensemble of interpretation techniques, i.e., leverag-
ing the strengths of multiple interpreters, to defend against
interpretation-based attacks. However, grouping interpretations
using the ensemble technique can be challenging because in-
terpretations by different interpreters may not always match.
We address this by finding cost-effective countermeasures that
improve defense while remaining computationally efficient.

Interpretations Ensemble Adversarial Detector: We propose
a novel multiple-interpreter-based detector that utilizes multiple
interpreters to check whether a given input is adversarial or
benign. For our experiment, we generated adversarial samples
based on one interpreter and produce attribution maps of those
samples via two interpreters including the target interpreter. For
example, for adversarial samples that are generated with the
Grad interpreter, we obtain the attribution maps of those samples
from both Grad and CAM interpreters. We adopt the same
process by targeting CAM and applying Grad as a secondary
interpreter. The generated attribution maps are based on single-
channel; therefore, we stacked single-channel attribution maps
of two interpreters to convert them into benign and adversarial
two-channel data. 2,000 benign and 2,000 adversarial samples
are produced for each experiment. We adopt the pre-trained
DNN model VGG-16 [37] to extract feature vectors from con-
volutional layers and we adopt the gradient-boosting classifier
as the final layer instead of the fully connected layer. The
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TABLE IV
RESULTS OF THE TWO-INTERPRETATION-BASED DETECTOR

TABLE V
RESULTS OF THE THREE-INTERPRETATION-BASED DETECTOR

main reason for the approach is that the benign and adversarial
attribution maps are highly similar and difficult to classify.
The gradient-boosting classifier combines several weak learning
models to form a strong predictive model. Since each attribution
map is a one-channel image, we replaced the input and output
layers of VGG-16 and trained only those layers. In another
setting, we also created a third channel by multiplying the
two attribution maps collected from two interpreters. Table IV
show the results of both cases. The detector could help improve
the adversarial detection process. We examine adopting three
different interpreters by stacking their attribution maps into a
3-channel input for the detector. Table V shows the detector
results based on the combination of three interpreters.

By leveraging several interpretations, the detector demon-
strates promising results in improving the system robustness. We
also note that more research is needed to assess computational
complexity and resource requirements when deploying such a
detector on larger datasets and real-world systems.

Interpretation-Based Robust Training: The defense technique
is based on the method in [45]. The technique considers a generic
form of L1 2-class interpretation difference:

DL1
(x, x̂) = (1/2)(‖gy(x, f)− gy(x̂, f)‖1

+ ‖gyt
(x, f)− gyt

(x̂, f)‖1).
This creates a perturbation-independent lower bound for any

adversarial attack that makes it hard to fool a classifier and evades
the interpretation discrepancy. Training a classifier against the
worst-case interpretation difference is recommended by the min-
max optimization problem

min
θ

Ex [ftrain(θ;x, y) + γDworst(x, x̂)] ,

where ftrain is the training loss (i.e., cross-entropy loss), Dworst

denotes a measurement of the highest interpretation difference
between benign and adversarial samples x and x̂, and γ balances

TABLE VI
RESULTS OF INTERPRETATION-BASED ROBUST TRAINING WITH DIFFERENT

PERTURBATION SIZE ε

the accuracy and model interpretability. For the experiment, we
adopted PGD attack framework to generate adversarial samples.
The results of the robust training are provided in Table VI. In
the table, the results are produced by the Wide-ResNet [46]
model with coupled CAM interpreter on CIFAR-10 [35] dataset.
Interpretability results are calculated using Kendall’s Tau order
rank correlation between the original and adversarial interpre-
tation maps. As shown in the Table VI, the adversarial-trained
model provided high classification and interpretation robustness
compared to the normal-trained model.

While the results indicate high classification and interpre-
tation robustness, we recognize the importance of evaluating
the feasibility of deploying this defense in practical scenarios.
Successful implementation requires considering factors such
as the availability of diverse training data, computational cost,
generalization capabilities, and trade-offs among robustness,
accuracy, and interpretability. Finding the right balance is crucial
for practical deployment.

Other Cost-Effective Defense Techniques: Cost-effective de-
fense techniques offer practical and efficient ways to enhance
robustness. These techniques (e.g., data augmentation, gradient
masking, jpeg compression, and feature squeezing) balance
effectiveness and computational efficiency well, making them
suitable for real-world applications with limited resources and
time constraints. Although no single defense method can en-
sure complete robustness, employing a combination of such
techniques can significantly strengthen model defense against
common attacks. We provide a result on such defenses, i.e., me-
dian smoothing, bit squeezing, and typical adversarial training
in Appendix D (Table XI), available online. We note that there
exist other potential countermeasures and strategies to enhance
the robustness of the system. For future work, we aim to broaden
our investigation to include other defenses, such as [47].

VII. CONCLUSION

This paper proposes two attack methods (AdvEdge and
AdvEdge+) to improve the adversarial attacks on interpretable
deep learning systems (IDLSes). These methods use edge in-
formation of the image inputs to optimize the ADV2 attack,
which provides adversarial samples to mislead the target DNN
models and their coupled interpretation models simultaneously.
By empirically examining three large datasets in four distinct
DNN architectures by adopting three different attack frame-
works (PGD, StAdv, and C&W), we showed the validity and
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efficacy of AdvEdge and AdvEdge+ attacks. We compared our
findings with four different types of interpreters (i.e., Grad,
CAM, MASK, and RTS). The results indicated that AdvEdge
and AdvEdge+ effectively produce adversarial samples capable
of misleading the DNN models and their interpreters. We also
showed that the transferability of attribution maps generated by
our attack methods provides significantly better results than the
existing methods. The results confirmed that the interpretability
of IDLSes provides a limited sense of security in the decision-
making process.
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