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Abstract— Establishing trust and helping experts debug and
understand the inner workings of deep learning models, inter-
pretation methods are increasingly coupled with these models,
building interpretable deep learning systems. However, adver-
sarial attacks pose a significant threat to public trust by making
interpretations of deep learning models confusing and difficult
to understand. In this paper, we present a novel Single-class
target-specific ADVersarial attack called SingleADV. The goal
of SingleADV is to generate a universal perturbation that
deceives the target model into confusing a specific category
of objects with a target category while ensuring highly rele-
vant and accurate interpretations. The universal perturbation
is stochastically and iteratively optimized by minimizing the
adversarial loss that is designed to consider both the classifier
and interpreter costs in targeted and non-targeted categories.
In this optimization framework, ruled by the first- and second-
moment estimations, the desired loss surface promotes high
confidence and interpretation scores of adversarial samples.
By avoiding unintended misclassification of samples from other
categories, SingleADV enables more effective targeted attacks
on interpretable deep learning systems in both white-box and
black-box scenarios. To evaluate the effectiveness of SingleADV,
we conduct experiments using four different model architectures
(ResNet-50, VGG-16, DenseNet-169, and Inception-V3) coupled
with three interpretation models (CAM, Grad, and MASK).
Through extensive empirical evaluation, we demonstrate that Sin-
gleADV effectively deceives target deep learning models and their
associated interpreters under various conditions and settings. Our
results show that the performance of SingleADV is effective, with
an average attack success rate of 74% and prediction confidence
exceeding 77% on successful adversarial samples. Furthermore,
we discuss several countermeasures against SingleADV, including

Manuscript received 7 June 2023; revised 3 January 2024 and 24 May
2024; accepted 26 May 2024. Date of publication 30 May 2024; date of
current version 11 June 2024. This work was supported in part by the
National Research Foundation of Korea (NRF) grant funded by the Korea
Government [Ministry of Science and Information and Communications
Technology (MSIT)] under Grant 2021R1A2C1011198, in part by the Institute
for Information and Communications Technology Planning and Evaluation
(IITP) grant funded by the Korea Government (MSIT) under the ICT Cre-
ative Consilience Program under Grant IITP-2021-2020-0-01821, in part by
Artificial intelligence (AI) Platform to Fully Adapt and Reflect Privacy-Policy
Changes under Grant 2022-0-00688, and in part by Convergence Security
Core Talent Training Business under Grant 2022-0-01199. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Luisa Verdoliva. (Corresponding author: Tamer Abuhmed.)

Eldor Abdukhamidov, Hyoungshick Kim, and Tamer Abuhmed are with
the Department of Computer Science and Engineering, Sungkyunkwan
University, Suwon 16419, South Korea (e-mail: abdukhamidov@skku.edu;
hyoung@skku.edu; tamer@skku.edu).

Mohammed Abuhamad and George K. Thiruvathukal are with the
Department of Computer Science, Loyola University at Chicago, Chicago,
IL 60611 USA (e-mail: mabuhamad@luc.edu; gthiruvathukal@luc.edu).

Digital Object Identifier 10.1109/TIFS.2024.3407652

a transfer-based learning approach and existing preprocessing
defenses.

Index Terms— Convolutional neural networks, interpretation
models, adversarial attack, adversarial perturbation, images.

I. INTRODUCTION

DEEP learning (DL) has made significant contributions
and advancements across various domains, including

computer vision [1], [2], [3], natural language processing, and
numerous security-sensitive applications [4], [5]. The impres-
sive performance of deep learning models on large datasets
has gained significant attention from the research community.
However, a fundamental challenge lies in comprehending the
underlying factors that drive the outcomes of DL models,
primarily due to their complex architectures. Consequently,
converting the behavior of DL models into a more compre-
hensible format for end-users has become crucial. To address
this issue, numerous interpretation techniques [1], [5], [6], [7]
have been developed to make DL models more understandable.
These models (i.e., interpreters) provide insights into how
DL models make decisions, which can help users trust and
use these models more effectively. These insights include 1
feature importance (i.e., identifying parts of the input that
are most significant for the model’s predictions; 2 heatmaps
and visualizations (i.e., offering visual representations of the
model’s focus areas, particularly in image processing tasks).

The combination of interpretability and prediction models,
known as Interpretable Deep Learning Systems (IDLSes),
is essential to understand the behavior of models and ensure
trustworthiness in detecting adversarial input. IDLSes have
become increasingly popular as they offer both predictions
and interpretations. However, recent studies have shown that
it is possible to create Adversarial Examples (AEs) that can
deceive both the target model and its coupled interpreters [8],
[9], [10], [11].

We introduce SingleADV, a single-class target-specific
adversarial attack method designed to generate targeted per-
turbations that deceive IDLSes by causing misclassifications
of an entire class of objects (referred to as the “source class”)
into a specific “target class.” The perturbations are designed
to maintain interpretations similar to those of benign inputs,
making it difficult for IDLSes to detect the attack. In a
targeted attack threat model, SingleADV generates stealthy
perturbations that effectively deceive IDLSes, therefore hin-
dering human involvement in analyzing the interpretation of
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Fig. 1. Adversarial examples that are generated using the ResNet-50 model with the CAM interpreter. The original image is a dog, but the adversarial
example is misclassified as a goose. The other class images (tractor and wolf) are not affected. The attacker achieves this by adding a single perturbation
to the original image. The perturbations are carefully chosen to have a minimal impact on the interpretation of the image, yet still cause the model to make
inaccurate classification.

Fig. 2. SingleADV approach vs. the existing attack [10] against ResNet-50 with CAM interpreter. SingleADV preserves benign attribution maps. Pred., Univ.
Pert. and Adv. Int. stand for prediction, universal perturbation, and adversarial interpretation.

adversarial inputs, as shown in Figure 1. Figure 2 demonstrates
that the employed interpreter can detect previous attacks, even
in white-box scenarios. For example, Figure 1 shows that
existing universal perturbation attacks [10] can be detected due
to inconsistencies between adversarial interpretations and the
object of the image, which can be recognized by an “observer.”
On the other hand, our approach generates adversarial interpre-
tations that are indistinguishable from benign ones, suggesting
no manipulation of the input data.

The main objective of SingleADV is to increase the success
rate of adversarial attacks. This involves fooling the classifier
and misleading its interpreter, while reducing the likelihood of
adversarial detection. SingleADV achieves this by generating
perturbations in a fine-grained manner. This ensures that the
perturbations significantly impact the target category while
minimizing their influence on other categories. Instead of
employing the traditional targeted attack approach, where
the model predicts the same label for all images, this work
focuses on a single class in an adversarial scenario to reduce
suspicion of an attack. We call this attack “single-class attack.”
Although we apply this technique to an image classification
task in this paper, it can be used in various security-sensitive
applications, such as malware detection and facial recogni-
tion systems. Additionally, the generated adversarial samples
cause the interpreter to produce false positives, resulting in
interpretations similar to benign inputs. This aspect makes it
difficult to identify the involvement of the adversary. This work
investigates the effects of generating universal perturbations to

launch a single-class attack in both white-box and black-box
scenarios. Furthermore, it explores potential countermeasures
and defenses against such attacks.

A. Our Contribution

We present SingleADV, a single-class attack method
designed to generate target-specific perturbations for inputs to
fool the target deep learning models and deceive their coupled
interpreters. Our method enables targeted attacks that are
specific to a particular category. We evaluate the effectiveness
of SingleADV on both the prediction and interpretation models
using the ImageNet dataset [1]. Our contributions can be
summarized as follows:
• We propose a novel adversarial attack called SingleADV,
which leverages interpretation-derived techniques to perform
targeted and category-specific fooling of DL models and their
associated interpreters. Unlike traditional approaches focusing
on individual input samples, our method extends the scope of
adversarial effects to encompass an entire object category, thus
limiting the impact within the chosen category.
• We evaluate SingleADV in terms of the success rate
for fooling the prediction model, the Intersection-over-Union
(IoU) score for deceiving the coupled interpreter, and the
leakage rate to measure the attack’s impact on non-targeted
classes. We demonstrate the effectiveness of our approach,
e.g., an average fooling ratio of 0.74 and a corresponding
adversarial confidence level of 0.78.
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• We conducted experiments using a knowledge distillation
(teacher-student) approach to assess the practicality and effec-
tiveness of SingleADV in a black-box setting. Our experiments
confirm that SingleADV can be applied effectively in the
black-box scenario, highlighting its practicality.
• We analyze the effectiveness of existing general defense
techniques against SingleADV. Furthermore, we propose a
novel adversarial training method that utilizes interpretation-
derived information to enhance the robustness of DL models
against adversarial attacks.

B. Organization

The rest of the paper is organized as follows: Section II
highlights the relevant literature; Section III provides the
problem formulation and the main algorithm; Section IV
and Section V provide the experiments and results in white-
box and black-box settings, respectively; Section VI proposes
potential countermeasures; Section VII discusses the limita-
tions; and Section VIII offers the conclusion.

II. RELATED WORK

This section highlights previous studies related to our
work, specifically in the domains of adversarial attacks and
interpretation-guided attacks. Machine learning models face
two primary threats: evasion attacks [4], which involve manip-
ulating the model’s behavior through data manipulation, and
poisoning attacks [4], which weaken the target model by
infecting the training data. This work focuses on the first
type of threat in which we manipulate data to make a DL
model misbehave while ensuring the preservation of correct
interpretation. Unlike existing approaches, we specifically
consider targeted attacks where the perturbations affect a
specific class without influencing other classes. Our work
is one of the pioneering studies exploring targeted attacks
against DL models using interpretability via a universal per-
turbation in both white-box and black-box settings. In the
following, we highlight the related studies that are rele-
vant to our work. Moosavi-Dezfooli et al. [12] highlighted
the existence of Universal Adversarial Perturbations (UAPs)
capable of misleading deep neural networks, yet these pertur-
bations often appear as noise-like patterns to the human eye.
Akhtar et al. [10] explored extended universal perturbations to
exploit the explainability of the model. Recent advances have
further refined these concepts: Stochastic Gradient Aggrega-
tion addresses gradient vanishing and local optima problems
in UAP generation [17]; Feature-Gathering UAP leverages
neural collapse phenomena for more effective attacks [18];
ensemble attack methodologies have evolved to overcome
bias issues in CNNs, enhancing UAP transferability [16]; the
HardBeat method introduces a novel approach to generate
adversarial patches with limited information, showing signifi-
cant effectiveness [19]; and the Sigma-UAP method improves
the imperceptibility of perturbations by manipulating image
frequency regions [20]. Our work aims to build a similar
attack, focusing on misleading interpretability alongside clas-
sification to increase the robustness and stealthiness of attacks,
making them more resilient against defenses and interpretative
methods.

A. Attacking Interpretability

Recent studies show that some interpretation models are
detached from DL models, and they can be impacted
by manipulations without affecting the DL model perfor-
mance [5], [15], [22]. Other studies have demonstrated the
validity and practicality of simultaneously attacking the deep
learning models and their corresponding interpreters [9].
Abdukhamidov et al. [23] introduce an optimized attack to fool
IDLSes with limited perturbation using the edge information
of the image in white-box settings. Oskouie and Farnia [21]
has shown the existence of a Universal Perturbation for
Interpretation (UPI) for standard image datasets, which can
alter the gradient-based feature map of neural networks in a
wide range of test samples. This UPI is computed using a
gradient-based optimization method and principal component
analysis, effectively altering the underlying model’s gradient-
based interpretation on different samples. This work focuses
on attacking IDLSes by generating universal perturbations
with a broader impact across diverse samples in a target cate-
gory regardless of the interpreters employed. The properties of
SingleADV and previous studies are summarized in Table I.

III. METHODS

This section discusses several key concepts related to our
work. We first introduce the problem formulation and then
describe the main algorithm for SingleADV.

A. Fundamental Concepts

1) DL Model: As our paper mainly focuses on the classifi-
cation task, let f (x) = y ∈ Y denote a classifier that assigns
an input x to a category y from a set of categories Y .

2) Interpreter: Let g(x; f ) = m denote an interpreter g
that generates an attribution (i.e., interpretation) map m that
reflects the importance of features in a sample x based on the
output of the classifier f , (i.e., the value of the i-th element
in m reflects the importance of the i-th element in x). Based
on the methods used to obtain interpretations of a model,
interpretation models can be divided into two types:
1 Pre-hoc Interpretability: It is achieved by construct-

ing self-explanatory models that integrate interpretability
directly into their structures. In other words, this type of
interpretability focuses on building DL models that can
explain their behavior explicitly in terms of the inference
process [7], [24]. The category includes decision tree, rule-
based model, attention model, etc.

2 Post-hoc Interpretability: Post-hoc Interpretability is
based on the complexity-regulated DL model interpretation
or adopting post-training methods [25], [26]. This type of
interpretation requires another model to provide explana-
tions for the current model.
Our proposed attack specifically targets post-hoc inter-

pretability, which involves the use of an interpreter that
receives information from the target DL model (e.g., gradi-
ents) and generates an interpretation of how the target model
classifies an input sample. One reason for choosing this type
of interpreter is that it does not require any modifications to
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TABLE I
COMPARISON OF RELATED WORKS BASED ON SEVERAL ASPECTS

the architecture of the prediction model, thereby preserving its
high prediction accuracy.

3) Threat Model: This work considers both white-box and
black-box attack scenarios for target-specific (i.e., targeted)
attacks against a given deep learning model and its coupled
interpreter. In the white-box setting, the adversary has com-
plete access to the victim classifiers f and their interpreters
g, and aims to target specific category with minimal effect on
other categories. The white-box threat model has been adopted
by previous studies (e.g., targeted [10] and non-targeted [8]
attacks. Although white-box scenarios provide valuable insight
into the strengths and weaknesses of the system, they are
often impractical in real-world applications. Therefore, we also
consider a black-box environment in which the adversary has
limited knowledge about the victim classifier, and can only
query the black-box model to receive its output.

B. Target Interpretation Model

The interpreters chosen for our experiment are representa-
tive of state-of-the-art interpretation techniques. For example,
Grad [27] shares the same formulations as DeepLift [28],
SmoothGrad [29], etc., while CAM [6] belongs to the
same family of representation-guided interpreters (e.g., Grad-
CAM [30]). We also use the MASK interpreter [31] from the
perturbation-guided interpreters. Thus, the attack is applicable
to other related interpreters.

1) CAM: In Class Activation Map (CAM) [6], interpreta-
tion maps are generated using feature maps taken from the
target DL classifier’s intermediate layers. The significance
of the areas of the samples is generated by reflecting the
weights of the fully-connected layer on the features maps
of the convolutional layer. Assume ai ( j, k) as the activation
of a channel i in the last convolutional layer at a spatial
position ( j, k), and

∑
j,k ai ( j, k) denote the outcome of

global average pooling. So, the softmax function receives:
ψy(x) =

∑
j,k

∑
i wi,y ai ( j, k), and the attribution map m y

is as follows: m y( j, k) =
∑

i wi,y ai ( j, k), where wi,y is the
weight associated with the output class y for i-th channel.
We construct interpretation maps by collecting and combining
feature vectors from f up to its last CNN layer.

2) Grad: To generate the importance of features of a given
sample, the gradient of a DL classifier’s outcome in terms
of the given sample is computed by the interpreter. To be

specific, based on the DL model f and its prediction y to
a certain sample x , the interpreter generates an interpretation
map or also called attribution map m as m y =

∣∣∣ ∂ fy(x)
∂x

∣∣∣. Since
the ReLU activation function is used in the target DL models,
and all CNN-based models, the computed result of the Hessian
matrix becomes all-zero. To find an optimal adversarial sample
x̂ , the gradient of the ReLU r(z) function is approximated as:

h(z) ≜


(z +

√
z2 + τ)′ = 1+

z
√

z2 + τ
for z < 0

(
√

z2 + τ)′ =
z

√
z2 + τ

for z ≥ 0

where h(z) approximates the gradient of ReLU r(z) with a
small constant parameter τ (e.g., τ = 1e − 4 ) [9].

3) MASK: This interpreter [31] generates interpretation
maps by detecting changes in the prediction of a DL model
while adding a minimal amount of noise to the sample.
Specifically, the interpreter creates a mask m that is a binary
matrix of the same size as the sample x . In the matrix,
0 represents the area of the sample x where the feature is
kept without noise. The value 1 in the matrix means that the
area is replaced with Gaussian noise. The main objective of the
interpreter is to find the smallest mask that disturbs a model’s
performance:

min
mask
: fy(φ(x; mask))+ λ ∥1− mask∥1 s.t. 0 ≤ mask ≤ 1,

(1)

where φ(x;mask) is the operator that generates perturbation
to decrease the probability of the current prediction category
y and the second term λ ∥1 − mask∥ helps the mask to
be scattered. Since the MASK interpreter is an optimization
function, applying the attack (as another optimization) is
directly infeasible. We reformulate the attack as a bi-level
optimization task (similar to the framework in [8] and [9]).

C. Problem Formulation

Let S be a distribution over the dataset and s ∈ Rd indicate
a sample from a distribution S. For trained model f (s)→ y,
where y is the correct class, the main objective of adversarial
attacks is to generate a perturbation p ∈ Rd that satisfies the
following constraint:

f (s + p)→ yt , where y ̸= yt , ∥p∥ℓp ≤ η (2)
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In Equation (2), confining yt to a chosen category and ℓp-
norm to a predefined value of η produces a targeted attack.

Generating universal perturbation in adversarial attacks
expands the domain of p, which we denote as D(p). Given
that |D(p)| ≥ 1, where | . | denotes the cardinality of a set,
we maximize the objective of Equation (2) as follows:

max
p

PD(p)( f (s + p)→ yt ),where:

PD(p)( f (s + p)→ yt ) ≥ γ, ∥p∥ℓp ≤ η, and |D(p)| ≥ 1 (3)

In Equation (3), P refers to the probability that, for all
samples within the domain defined by D(p) applying the
perturbation p to an input sample s results in the model f
predicting the target class yt . In other words, it aims to find
a perturbation p that, with high probability (controlled by the
adversarial confidence threshold γ in the range of [0, 1]), can
fool the model f into predicting the target class for all relevant
input samples. The constraint |D(p)| ≥ 1 ensures that the
perturbation p is effective in a wide range of samples in the
domain set, not just for one sample, which is crucial to ensure
the universality of the perturbation across the dataset. We use
η = 7 and γ = 0.7 in our experiments. Experimentally, these
settings provide the best trade-off between effectiveness and
computational cost.

1) Rationale for Thresholds: In the context of adversarial
attacks, ensuring the success of the misclassification and
the model’s high prediction confidence are crucial. This is
achieved by introducing a threshold for other classes in our
minimization problem to ensures that the model’s prediction
confidence of the adversarial sample remains high enough
to avoid two potential issues: the rejection of the predicted
outcome [32], [33] and out-of-world scenarios [34], [35].
Many classifiers reject predictions if the confidence score for
the predicted class is below a specific threshold to avoid
incorrect predictions and ensure the model only produces
relatively confident outputs. The attack might fail in this case
because the model could reject these predictions rather than
misclassify them into the targeted class. In the case of the Out-
of-World Scenario, the model’s prediction also does not align
with any known class, often due to extremely low confidence
across all classes, and outputs a special “unknown” or “out-of-
distribution” class, effectively mitigating the adversarial attack.
Therefore, the threshold ensures effective adversarial per-
turbations by maintaining high misclassification confidence,
preventing the rejection of such samples.

In SingleADV case, we consider an interpretation model
to generate universal perturbation that keeps the adversarial
interpretation result similar to the interpretation of the original
samples. Hence, we have the other following constraints:

1 Ensuring model misclassification to a predefined category:
f (s + p) → yt , y ̸= yt , where yt is the target category.

2 Restricting the sample domain to the selected category:
D(p) = {s | s ∼ Sselected}, where Sselected is the sample
distribution from the category considered for the attack.

3 Restricting the effect of the perturbation on other cate-
gories’ domain: PD̂(p)( f (ŝ+ p)→ yt ) < γ , where D̂(p)
represents the domain and ŝ represents the samples from
non-selected categories.

4 Triggering an interpreter g to generate target attribution
maps: g(s + p; f )

similar
−−→ mt , such that g(s; f )→ mt .

We focus on the single-class attack in our research for
the following reasons. 1 Targeting a specific class allows
fine-tuning adversarial perturbations to exploit unique vulner-
abilities, leading to a higher success rate and more controlled
optimization. 2 We aim to create UAPs for a single class,
which can enhance the manipulation of deep features associ-
ated with that class. This helps obtain specific yet effective
perturbations that achieve the adversarial objectives with min-
imal effect on other categories while maintaining similar
interpretations. 3 Adversarial samples can appear less suspi-
cious when targeting a single class, creating an additional layer
of stealth and posing challenges in detecting such samples.

D. Computing the Perturbation

The algorithm described in Algorithm 1 generates perturba-
tions that satisfy the constraints mentioned in Subsection III-C.
The objective of the algorithm is to calculate a universal
perturbation through a series of steps that aim to minimize the
cost of the attack. The goal is to increase the confidence of
adversarial samples for the selected category in both the target
classifier and the interpreter while minimizing the difference
between benign and adversarial attribution maps.

The desired cost surface for high confidence and low
interpretation loss is based on stochastic computation and is
ruled by first- and second-moment estimations. The first and
second moments check if the computed perturbation prevents
other categories from crossing their decision boundaries during
the generation process. The computed perturbation should not
interfere with the prediction of non-source classes. ℓ∞ norm
is applied to bounce the perturbation norm. We explain each
line of the algorithm in detail.

The typical attack is based on the white-box scenario, as it
requires the target model’s parameters. Samples of the selected
category and other categories, S and Ŝ, are accumulated from
D(p) and D̂(p), respectively. Given S and Ŝ, model f ,
interpreter g, η for the ℓp-norm of the perturbation, target
category yt , batch size b, adversarial confidence γ (confidence
level as a target category), pre-set first- and second-moment
hyperparameters, β1 and β2, the algorithm starts the initializa-
tion process by setting p0, υ0, ω0 ∈ Rd as zero vectors.

The algorithm first randomly samples the selected category
and the other categories in sets Sx and So, and the cardinality
of each set is half of the batch size b (line 3). Then the
attribution maps M and M̂ are calculated as g(Sx ; f ) and
g(So; f ), respectively (line 4).

In line 5, all sets are perturbed by subtracting the currently
estimated perturbation pi from each of them (the operation
is displayed as ⊖). The subtraction optimizes the perturbation
effectively by aligning with the negative gradient direction,
ensuring efficient exploration of the adversarial space while
maintaining norm constraints, which makes it suitable in
gradient-based optimization and preventing data saturation
issues. The perturbed samples are then clipped to a valid range
(e.g., [0,255] in 8-bit pixel values) using the C function.

In line 7, we calculate the ratio between the expected norms
(it is referred to as E in the algorithm) of the gradients of
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Algorithm 1 SingleADV Attack’s Main Algorithm
Data: Target model f , interpreter g, selected category

samples S, non-selected categories samples Ŝ
s.t. Si or Ŝi ∈ Rd , target category yt ,
perturbation norm η, balance factor λ, batch
size b, and adversarial confidence γ ,
β1 = 0.9 and β2 = 0.999.

Result: Universal Adversarial Perturbation p ∈ Rd

1 Initialization: i = 0, and setting p0, υ0, ω0 ∈ Rd ;
2 while adversarial confidence < γ do
3 Sx

rand
∼ S, So

rand
∼ Ŝ s.t. |Sx | = |So| = b

2 ;
4 M ← g(Sx ; f ) and M̂ ← g(So; f ) ;
5 X ← C(Sx ⊖ pi ), X̂ ← C(So ⊖ pi );
6 i ← i + 1;

7 ϑ ←
Exi∈X,mi∈M

(
∥∇xi (lprd ( f (xi ,yt ))+λ lint (g(xi ; f ),mi ))∥2

)
Ex̂i∈X̂ ,m̂i∈M̂

(
∥∇x̂i (lprd ( f (x̂i ,y))+λ lint (g(x̂i ; f ),m̂i ))∥2

) ;

8 ψi ←
1
2

(
Exi∈X,mi∈M

[
∇xi (lprd( f (xi , yt ))+

λ lint (g(xi ; f ),mi ))
]
+

ϑ Ex̂i∈X̂ ,m̂i∈M̂

[
∇x̂i (lprd( f (x̂i , y))+

λ lint (g(x̂i ; f ), m̂i ))
])

;
9 υi ← β1υi−1 + (1− β1) ψi ;

10 ωi ← β2ωi−1 + (1− β2)(ψi ⊙ ψi );

11 p̄←

√
1−βi

2

1−βi
1
. diag

(
diag(

√
ωi )
−1υi

)
;

12 pi ← pi−1 +
p̄
∥ p̄∥∞

;
13 pi ← sign(pi )⊙min(|pi |, η);
14 end

selected category and other categories using the selected and
non-selected category samples, and the computed attribution
maps of the interpreter. In the algorithm, lprd is the classifica-
tion loss that shows the difference between the prediction of
the model and the intended category, while lint is the interpre-
tation loss to calculate the difference between the current and
target attribution maps: lint (g(x; f ),m)) = ∥(g(x; f )− m∥22.
Notice that we compute the gradients of the selected category
and other categories differently w.r.t. prediction labels (i.e.,
selected samples x → yt and other samples x̂ → y where y
is the right label). ∇xi (lprd( f (xi , yt )) (ignoring the negative
sign) provides the direction to deceive the model into predict-
ing yt for xi when the sample is from the source category,
while ∇x̂i (lprd( f (x̂i , y)) increases the confidence of a correct
prediction when the sample is from other categories. Since we
consider the interpretation loss in the context of the chosen
direction for optimization, we use λ to scale the interpretation
loss lint and balance the two factors (i.e., lprd and lint ) within
the overall optimization. The value of the hyperparameter
depends on the interpreter. In our experiments, we explored
different values of λ to account for different interpreters (e.g.,
0.02, 0.65, 400 for Grad, CAM, and MASK, respectively).
The norms of calculated gradients might vary significantly,
and we use the calculated scaling factor ϑ to account for such
variation. Using ϑ , we calculate ψi as the weighted average

of the expected gradients for both the source (selected) and
non-source (non-selected) categories (line 8). Next, the first
and raw second moments, i.e., υi and ωi , of the computed
gradients are calculated using exponential moving averages
with decay factors of β1 and β2 (line 9 and line 10). The
⊙ represents the Hadamard product for effective stochastic
optimization on the cost surface. On line 11, we perform
a bias-corrected estimation, since the second moment (i.e.,
moving average) is known to be heavily biased in the early
stages of optimization. The derivation of the expression in
line 11 is explained in [10]. The perturbation is computed
by the ratio between the moment estimates ( υi√

ωi
, where ωi

represents the second moment), and as the notations are
vectors, we convert vectors into diagonal matrices or diagonal
matrices into vectors via diag(.) operation. Finally, we update
the perturbation by restricting the p̄ with ℓ∞-norm to keep
the desired direction (line 12). The norm of the computed
perturbation is restricted by ℓ∞-ball projection at the end of
each iteration to minimize the perturbation perceptibility by
performing the Hadamard (⊙) product between the element-
wise sign (sign(.)) and the minimum values for perturbation
(line 13).

The objective of SingleADV is not only to deceive the
classifier by making it misclassify the designated source class
samples while correctly predicting non-source classes but also
to preserve the original interpretation for all samples of the
source class. From an adversarial standpoint, this approach
minimizes the suspicion of the attack by manipulating a single
class rather than making the classifier predict the same label
for all images and providing different attribution maps.

IV. SINGLEADV IN WHITE-BOX SETTINGS

A. Experimental Settings

1) Dataset: We use the ImageNet dataset [1] for our
experiments. The training set consists of 1,300 samples per
category from the ImageNet dataset. We use the training set
within the attack framework to calculate the perturbation. The
testing portion of the dataset, which includes 50 samples per
category (both source and non-source categories), is used to
evaluate the generated perturbation. To ensure accurate gradi-
ent directions, we randomly select samples that are correctly
classified with ≥60% confidence from both the targeted and
non-targeted categories. In this paper, we designate certain
object classes as the targeted category while considering other
classes as the non-targeted category. For instance, categories
such as panda, dog, and cup are used as targeted categories
(see Table II).

2) DL Models: In the experiments, four pretrained versions
of state-of-the-art DL models are used for our targeted attack,
which are ResNet-50 [3] (74.90% top-1 accuracy and 92.10%
top-5 accuracy on ImageNet dataset), VGG-16 [2] (71.30%
top-1 accuracy and 90.10% top-5 accuracy on ImageNet
dataset), DenseNet-169 [36] (76.20% top-1 accuracy and
93.15% top-5 accuracy on ImageNet dataset), and Inception-
V3 [37] (77.90 % top-1 accuracy and 93.70% top-5 accuracy
on ImageNet dataset). The models are chosen in terms of
performance and network architecture to help measure the
effectiveness of our attack.
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3) Interpretation Models: CAM [6], Grad [27] and MASK
[31] interpreters are utilized as representative of interpretation
models. Their original open-source implementations are used
for our experiment to build interpreters of all DL models.

4) Attack Evaluation: The effectiveness of the attack is
evaluated by conducting several experiments and calculating
some evaluation metrics in terms of attack success rate in
fooling the classifier while maintaining a convincing interpre-
tation. The evaluation aims to find answers to the following
questions: 1 Is our technique effective in attacking DL
models by targeting a single category? 2 Is our technique
effectively misleading the interpreters by generating a similar
interpretation to the benign sample?

5) Evaluation Metrics: To assess the effectiveness of the
proposed attack against the target IDLSes, we utilize various
metrics. These metrics are employed to evaluate the attack’s
impact on both the classifiers and interpreters. The following
metrics are used in our evaluation:

Against Classifiers:
• Fooling Ratio: This metric [12] measures the proportion of
images that undergo the universal perturbation and have their
labels changed. It indicates the attack’s success in causing
misclassifications by the target model, specifically into the
target category. This metric provides a quantitative measure
of the attack success against DL models.
• Misclassification Confidence: This metric [9] measures the
probability (i.e., confidence) of an adversarial sample assigned
to the target category (i.e., we measure the average confidence
scores of adversarial samples successfully misclassified).
• Classification Confidence: This metric [9] evaluates the
impact of universal perturbations on non-target categories.
It measures the confidence scores of these categories when
the perturbation is applied, revealing the extent to which
the model’s performance is affected while maintaining its
effectiveness against the targeted category.
• Leakage Rate: This metric [12] measures the impact of uni-
versal perturbations on non-source categories. It is calculated
as the ratio of misclassified non-source category images to the
total number of non-source category images used for testing.
A lower leakage rate indicates that universal perturbations are
more specific to the target category, while a higher leakage
rate suggests a more general impact.
• Noise Rate: We use the inverse of the average Structural
Similarity Index Measure (SSIM) [38] between the original
and perturbed images to measure the visual disturbance.
A higher score signifies greater visual distortion, while a lower
score indicates a more imperceptible perturbation, which is
preferable to maintain the visual quality after the attack.

Against Interpreters:
• Qualitative Comparison: This method [9] is used to verify
whether the results of interpretation are perceptually similar.
Manual inspection is conducted to compare interpretation
maps to their corresponding benign versions.
• IoU Test (Intersection-over-Union): This metric [39] cal-
culates the intersection areas between the adversarial and
the benign interpretation maps. To conduct the IoU test,
we implement a binarization process. Specifically, we apply

ten thresholds within the range [0, 1], converting the continu-
ous values of benign and adversarial interpretation maps into
binary representations. The similarity of these binary maps is
then assessed at each threshold, and an average similarity score
is calculated across all thresholds. We calculate scores as:
IoU(m,m◦) = |O(m)

⋂
O(m◦)|÷|O(m)

⋃
O(m◦)|, where m

denotes the binary attribution map of samples with the univer-
sal perturbation, and m◦ represents the binary attribution map
of samples without perturbation. Here, O(.) is the binarization
function applied at each threshold.

B. Attack Effectiveness Against DL Models

We first assess the attack’s effectiveness in deceiving the
classifiers. The results are summarized using the fooling
ratio, misclassification confidence, and leakage rate with the
perturbation norm η = 7 and adversarial confidence γ =

0.7 in Table II. The reported results (i.e., fooling ratio or
attack success rate, misclassification confidence, and leakage
rate) are based on the test samples that are not seen by
the selected model and the attack algorithm. The source and
target categories were selected randomly. We also included
the results of the Targeted Fooling Attack [10] for compar-
ison. We used similar settings for a fair comparison. Since
the attack [10] does not require any interpreter to generate
adversarial samples, we only need to test it against DNN
models once. The success of the attack is demonstrated by
fooling ResNet-50, VGG-16, DenseNet-169, and Inception-V3
trained on the ImageNet dataset [1].

Observing the results for four classifiers (i.e., ResNet-50,
VGG-16, DenseNet-169, and Inception-V3), the attack gen-
erates a universal perturbation for different architectures with
high fooling rates. More specifically, VGG-16 and ResNet-50
were deceived with the universal perturbation of SingleADV
with a success rate of more than 70% for all target categories
regardless of the interpreter. This means that the addition of
the universal perturbation to any raw image in our test samples
can deceive the target DL models more than seven times out
of ten. The attack also achieved better results with a higher
than 60% fooling ratio in all interpreters when Densenet-
169 and Inception-V3 were used as the target DL models.
Among the target models, Inception-V3 was attacked with
a relatively lower fooling ratio while VGG-16 achieved a
higher fooling ratio compared to the other models. Based
on the misclassification confidence results, the attack fools
target DL models with confidence scores higher than 70%
regardless of the interpreters employed. Higher scores can
be seen when the attack is implemented against ResNet-50
and DenseNet-169, while the Inception-V3 model provides
lower scores in all interpreters. The main reason for the
lower confidence scores of Inception-V3 could be due to its
architectural design and global averaging before the output
layer, which reduces the computational cost and decreases
the effect of perturbation on the output. Compared to existing
attack [10], our attack algorithm demonstrates better misclassi-
fication confidence performance on the VGG-16, ResNet-50,
and DenseNet-169 models for Targets 1 and 2. Taking into
account the multiple objectives of simultaneously targeting
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TABLE II
FOOLING RATIO, MISCLASSIFICATION CONFIDENCE, AND LEAKAGE RATE AGAINST SEVERAL MODELS USING IMAGENET.THE RESULTS SHOW

SOURCE CATEGORY
TO
−→ TARGET CATEGORY FOR TARGET 1: PANDA→ CAT, TARGET 2: DOG→ GOOSE, TARGET 3: CUP→WOLF.THE BEST

RESULTS WITH RESPECT TO THE LAST ROW (TARGETED FOOLING ATTACK [10] WITH NO INTERPRETATION CONSIDERED) ARE PROVIDED IN BOLD

Fig. 3. Classification confidence of adversarial samples (non-source cate-
gories) based on various models and interpreters. The N/A (no interpreter)
shows the results of the existing attack [10]. The universal perturbation is for
Dog → Goose.

DL models and interpreters, our approach exploits specific
vulnerabilities within these architectures.

According to the leakage rate analysis, SingleADV appears
to perform well. The computed leakage rate indicates that the
algorithm’s universal perturbation has a limited impact on non-
source classes, with an average of 33% leakage rate across
all interpreters while the existing attack [10] has an average
leakage rate of 36%. This suggests that the perturbation is
more specific to the targeted source class and has minimal
impact on other non-source classes, which is a desirable
characteristic. A low leakage rate implies that the algorithm’s
universal perturbation has a more targeted effect and is less
likely to cause errors in the classification of non-source classes.

The results of the classification confidence metric are pre-
sented in Figure 3, which depicts the impact of a universal
perturbation on the confidence scores assigned by the DL
models for non-source categories when various interpreters
are used. To provide a basis for comparison, the scores
obtained without any universal perturbation and the scores of
the existing attack [10] are also included. The figure shows that
the universal perturbations generated using the CAM and Grad
interpreters have a smaller impact on non-source categories
than that of the MASK interpreter. Nevertheless, the results
indicate that the perturbation has a minimal impact on the
scores of non-target categories.

To determine the noise rate of UAPs, the perturbation is
applied to each image in the dataset, and the inverse of SSIM
(1 - SSIM) is evaluated between the perturbed and original

Fig. 4. Noise rate of adversarial samples of Targets 1, 2, and 3 based on
various models and interpreters. The N/A (no interpreter) shows the results
of the existing attack [10].

versions. Figure 4 displays the results of the noise rate of
SingleADV and [10]. The results indicate that our attack yields
low levels of noise, demonstrating its ability to create effective
and impactful adversarial examples.

C. Attack Effectiveness Against the Interpreters

First, we use qualitative comparison to verify whether
the attribution maps produced from adversarial samples are
perceptually similar to their benign samples. We checked all
adversarial attribution maps and found that observing all the
cases for all targeted categories, SingleADV attack generates
universal perturbations that produce attribution maps on adver-
sarial domains similar to or indistinguishable from attribution
maps in the corresponding benign domain. Figure 5 displays
a set of samples along with their attribution maps based on
the CAM, Grad, and MASK interpreters. The samples are
randomly selected from the set of outputs of our attack. In the
figure, the first three columns display benign samples, their
attribution maps, and their prediction categories. The last three
columns present universal perturbations generated based on
a DL model and an adopted interpreter, adversarial attribu-
tion maps produced by adding the universal perturbations to
benign samples, and target prediction categories. As shown
in the figure, the results support high similarity in terms of
interpretations. By observing the attribution maps produced
for adversarial samples in both targeted and non-targeted
categories, SingleADV produces perturbations that only affect
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Fig. 5. Attribution maps of benign and adversarial samples based on VGG-16, ResNet-50 with CAM, Grad and MASK interpreters. In this sample, our
target category is Dog → Goose. (Ben.Int. stands for Benign Interpretation, Adv.Int. stands for Adversarial Interpretation and Univ.Pert. stands for Universal
Perturbation).

Fig. 6. IoU scores of SingleADV (Upper) and [10] (Lower) for attribution
maps of adversarial samples. The results are based on CAM, Grad, and MASK
interpreters for VGG-16, ResNet-50, DenseNet-169, and Inception-V3.

the target category in terms of prediction while maintaining
accurate interpretations across all categories.

Additionally, the attribution maps of benign and adversarial
samples are compared using the IoU score metric. The IoU
score is calculated by binarizing the attribution maps using
a threshold value. Any value above the threshold is assigned
a value of 1, while any value below the threshold is set to
0. We apply different threshold values (i.e., 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9) to measure IoU scores and report the
average of those IoU scores in Figure 6. The region of interest
is generally considered positive if it has an IoU score of 0.5 or
higher compared to the ground truth. Therefore, we assume
that adversarial interpretation maps with an IoU ≥ 0.5 based
on their benign interpretation maps are credible. The IoU
scores for all evaluated models, namely VGG-16, ResNet-50,
DenseNet-169, and Inception-V3, exceed 60% for SingleADV
when using CAM and Grad interpreters, as shown in Figure 6.
However, our attack shows lower IoU scores for all models
when using the MASK interpreter. This reduction in IoU
scores with the MASK interpreter can be attributed to dif-
ferences in the shape and size of the regions identified as
important for benign and adversarial attribution maps. Further
discussion regarding the factors contributing to lower IoU
scores with the MASK interpreter is in Section VII. Compared
to the IoU scores of [10], which are below 30%, our attack
maintains a higher degree of stealth, preserving the similarity
of the attribution maps to those of benign samples, which is
crucial to creating convincing adversarial examples.

V. SINGLEADV IN BLACK-BOX SETTINGS

Since white-box attacks have limited practicality in real-
life cases, we also employ our proposed method in black-box
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Fig. 7. Teacher-student strategy of SingleADV in a black-box environment,
where the unlabeled dataset is pseudo-labeled using the teacher model (a
black-box model). SingleADV uses the student model to learn universal
perturbation.

settings. We focus primarily on specific architectures and
interpretation models to establish a foundational understanding
and serve as a proof of concept for our method. However,
we note that our focus on a select group of models may not
fully demonstrate the effectiveness of SingleADV with a wider
range of models and interpretation tools.

A. Methodology

To apply SingleADV in black-box settings, we adopt a
teacher-student learning strategy, a method considered effec-
tive in attacking black-box DL models [40], [41], [42]. In a
black-box scenario, the adversary has limited knowledge about
the target DL model (teacher model), the training process,
and the data used for training, and can only interact with it by
querying the model and receiving the output. To overcome this
limitation, the adversary uses a student model, which is trained
to approximate the decision boundaries of the teacher model.
This process begins by preparing a substitute dataset, relevant
to the task of the teacher model (but not requiring its labels),
and querying the teacher model to obtain pseudo-labels for
samples in the substitute dataset. These pseudo-labeled data
are then used to train the student model, ensuring that the
architecture of the student is sufficiently complex to mimic
the teacher’s behavior [42]. After training, the student model
serves as a base for attacking the teacher model, i.e., helps to
generate adversarial examples that can exploit vulnerabilities
in the teacher model when targeting specific categories.

Figure 7 illustrates the teacher-student strategy. The pertur-
bation that triggers misclassification in the student model for
a selected category is then tested against the teacher model to
validate whether it can cause a similar misclassification. In our
experiments, the total number of queries to the target model is
determined by the size of the unlabeled dataset used in training
the ‘student model.’ Each dataset sample equates to one query,
and we perform one more query to test the effectiveness of the
universal perturbation generated by the student model. Hence,
the total query count equals the size of the unlabeled dataset
plus one, providing a straightforward measure of our method’s
computational efficiency in real-world scenarios.

1) Dataset: In the experiment, we randomly select a deep
learning app from Google Play to use its deep learning model
as a target black-box model. We use an app called Bei Ke that
is used to identify scenes. By tracking the APIs of the deep
learning frameworks in the app using tools called Soot [43]
and FlowDroid [44], we observe the working and invoking
processes of the DL framework. The tools help us invoke

the DL model of the app to send a sample and receive its
response. We utilize the ImageNet dataset as an unlabeled
dataset, which we find most relevant to the app task. We query
the teacher model (i.e., the DL model within the app) to label
the ImageNet dataset, which we find to be the most relevant to
the app task. This process involves only the training dataset we
used in previous experiments, i.e., 1,300 training images per
class. This newly labeled dataset is used to train the student
model. After training is complete, 30 random samples from the
test set are selected to test our approach against one universal
perturbation of the target category.

2) Student Model: In the teacher-student learning approach,
a student model with a complex architecture is the correct
option to imitate a teacher model well. The more complex the
student model, the higher the success rate of the attack [42].
Therefore, we adopt the VGG model architectures (VGG-11
and VGG-16) as student models. In training student models,
we use the SGD optimizer [45] with a learning rate of 0.001 to
optimize cross-entropy loss for 70 epochs.

3) Interpreter: We employ the CAM interpreter based on
its performance shown in Figure 6. However, the target black-
box model (teacher model) does not provide interpretability,
and we cannot add the CAM as we do not have access.
Therefore, we employ only the fooling ratio metric for the
teacher model while calculating the fooling ratio and the
similarity of attribution maps for the student model. To show
the attack’s effectiveness in generating similar interpretations
with the adversarial samples as the ones for the benign
samples, we perform a controlled experiment where we do not
have access to the teacher model, but generate interpretation
maps from the student model. We adopt ResNet-50 as the
teacher model and VGG-16 as the student model.

For the reproducibility of our experiments, our code,
data, and models are available at (https://github.com/InfoLab-
SKKU/SingleClassADV).

B. Experimental Results

Figure 8 depicts the results of the experiment. Since the app
does not provide interpretability, we test the app in terms of
the fooling ratio, while the IoU test results are calculated from
the attribution maps of the student models. The attack achieves
fooling ratios of more than 60% and 70% with interpretation
maps of more than 60% and 70% similarity against benign
ones, using Student 1 (VGG-11) and Student 2 (VGG-16),
respectively. The same perturbation reaches about 30% and
50% in the fooling ratio when used against the teacher model.
Figure 9 shows the results of a controlled experiment to
generate interpretation maps on the teacher model to check
if they share similarities with benign interpretation maps. The
results show that the attack achieved approximately a 60%
fooling ratio of the teacher model (ResNet-50) and over 60%
IoU score using CAM, which is more or less the same as
the student model (VGG-16). The results of both experiments
show the efficacy of SingleADV against black-box models.

VI. COUNTERMEASURES

In the following and based on our observations, we discuss
several potential countermeasures against SingleADV.
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Fig. 8. The fooling ratio and IoU scores results are based on the universal
perturbation generated by SingleADV following the teacher-student learning
approach. A student refers to a white-box DL model (Student 1: VGG-11,
Student 2: VGG-16), and a teacher refers to a black-box DL model used by
an app. Source and target categories are selected randomly.

Fig. 9. The fooling ratio and IoU scores results are based on the universal
perturbation generated by SingleADV following the teacher-student learning
approach. A student refers to a white-box DL model (VGG-16), and a teacher
refers to a black-box DL model (ResNet-50). IoU results are based on the
attribution maps generated CAM interpreter.

A. Preprocessing Methods

Preprocessing approaches involve specific modifications to
eliminate adversarial noise from samples before passing them
to the DL model. The objective of preprocessing defenses is
to enhance the robustness of DL models against adversarial
samples, ensuring that the models can classify adversarial sam-
ples correctly with a small reduction in performance on benign
images. It is important to note that relying on a single prepro-
cessing defense technique may not be sufficient, as the attack
can be adapted to bypass that particular defense. Therefore,
employing multiple preprocessing techniques can help remove
the perturbation added to the samples. By focusing on different
features of the samples, these defense techniques make it more
challenging to generate robust adversarial samples that can
bypass these defenses.

To evaluate the effectiveness of defense techniques, includ-
ing our proposed defense method, we apply them to adversarial
samples and visualize their impact in Figure 10. These exam-
ples provide insights into how the defense models affect the
adversarial samples and highlight the effectiveness of the
defense techniques in mitigating the impact of SingleADV.

Table III provides the fooling ratio of SingleADV when a
pair of defense methods is applied to preprocess the adversarial
samples generated by SingleADV. In the experiment, three
defense techniques were included, namely bit depth reduc-
tion [46], median smoothing [47], and random resizing and
padding (R&P) [48]. Each defense technique was applied
with its default hyperparameters. The results demonstrate
that employing two defense techniques together decreases
the effectiveness of the attack. It is worth noting that the
performance of the defense methods can be further improved
by adjusting the settings and hyperparameters of the defense

TABLE III
FOOLING RATIO OF ADVERSARIAL SAMPLES WHEN TWO DEFENSE TECH-

NIQUES ARE APPLIED. THE RESULTS ARE BASED ON 30 SAMPLES OF
THE TARGETED CATEGORY (TARGET 2: DOG→ GOOSE)

techniques. We note that optimizing the parameters makes it
possible to improve the performance of defense methods in
mitigating the impact of SingleADV.

B. Ensemble Interpreter

The term “ensemble interpreter” refers to using a set of
interpreters to provide a comprehensive view of a DL model.
By employing multiple interpreters, each with its unique
characteristics, a more comprehensive understanding of the
DL model can be achieved [23]. Therefore adopting several
interpreters can help detect if a sample is benign or adver-
sarial. Future research direction can be in examining whether
SingleADV can be adapted to counter IDLSes with ensemble
interpreters. For example, the attack can be optimized to
minimize the interpretation loss across multiple interpreters
used by an IDLS. However, it is worth mentioning that the
generation process of adversarial samples in SingleADV can
be computationally expensive against IDLSes with ensemble
interpreters. Therefore, the number of interpreters employed
in an IDLS can play a significant role in defending against
SingleADV.

C. Interpretation-based Adversarial Training (IbAT)

The objective of this task is to develop robust classifiers
that can effectively handle universal perturbations. To this end,
we adopt a similar approach to the one in [49] and leverage
concepts from robust optimization. Our strategy involves for-
mulating the problem of universal adversarial training as a
min-max optimization problem to construct highly resilient
models to universal perturbations. By treating the generation
of universal perturbations as an optimization task, we aim
to find the optimal perturbation that maximally affects the
model’s robustness while minimizing its impact on the model’s
performance on benign inputs. To solve this optimization
problem, we utilize alternating stochastic gradient methods.

Algorithm 2 uses a single perturbation refined throughout
all iterations.

We only update the weights w and perturbations p once per
training step.

In the algorithm, the universal perturbation is cropped by
identifying significant areas. This is achieved by converting
the interpretation mask m ∈ M into binary form mo = Ot (m)
using threshold t = 0.3 so that a value of 0 indicates an
irrelevant area and 1 indicates a relevant area. The mask is
then multiplied with the universal perturbation p using the
operator ⊙ for element-wise multiplication.
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Fig. 10. Examples demonstrating the influence of defense mechanisms on adversarial samples. Ben. label and Adv. label represent benign and adversarial
labels, respectively. MC stands for misclassification confidence.

Algorithm 2 Interpretation-Based Adversarial Training
Against Universal Perturbations
Data: Samples X , perturbation threshold ϵ, learning

rate α, momentum µ, perturbation p,
interpretation masks M

1 for epoch i = 1 . . . N do
2 for minibatch b ⊂ X and I ⊂ M do
3 Mo = Ot (I ) # Binarization using threshold t
4 # weight update based on expected norms E of

the gradient ∇
5 gw ← µgw − Ex∈B m∈Mo [∇wl(w, x + m ⊙ p)];
6 w← w + αgw;
7 # perturbation update
8 p←

p + ϵ sign
(
Ex∈B m∈Mo

[
∇p L(w, x + m ⊙ p)

])
;

9 Projecting p onto the p-ball.
10 end
11 end

This approach enables the model to learn and become
more robust to the perturbation within the interpretation
mask. For the CIFAR-10 experiment, we use a perturba-
tion threshold ϵ of 0.031, a batch size of 128, Momentum
SGD with an initial learning rate of 0.1 that drops until
0.001 and trained for 500 epochs for the ResNet-20 model.
The selection of the CIFAR-10 dataset and the ResNet-20
model for adversarial training and testing was driven by
practical considerations such as performance, computational
efficiency, standardization, and generalization properties. For
the ImageNet experiment, we use pre-calculated universal
perturbations (i.e., using the DenseNet-169 model with CAM
interpreter from the experiments presented in Table II), as a
computationally efficient alternative. To enable adversarial

TABLE IV
FOOLING RATIOS AND LEAKAGE RATES OF SINGLEADV USING

CIFAR-10 AND IMAGENET DATASETS BEFORE AND AFTER

INTERPRETATION-BASED ADVERSARIAL TRAINING. THE RESULTS WERE

OBTAINED USING A SAMPLE SIZE OF 200 PER CATEGORY (2,000 TOTAL)
FOR CIFAR-10 AND 50 PER CATEGORY (50,000 TOTAL) FOR IMAGENET

training, we use a fine-tuning approach to learn relevant
features in the presence of perturbations efficiently. We use
a batch size of 32, Momentum SGD with an initial learning
rate of 0.1 that drops until 0.001, a perturbation threshold of
0.04 and 100 epochs.

In our experiments, we randomly select the source and
target categories for the CIFAR-10 dataset. However, when
using the ImageNet dataset, we utilize previously calculated
universal perturbations for the targets described in Table II.
To evaluate the effectiveness of IbAT, we conduct experiments
and measure the fooling ratio and leakage rate before and after
applying adversarial training. Table IV shows that the fooling
ratio and leakage rate decrease significantly after applying
IbAT. This indicates that the customized adversarial training
approach improves the classifier’s robustness against the attack
on both source and non-source categories. IbAT offers a unique
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approach by enhancing the robustness of models against
dual adversarial attacks aimed to fool the models and their
interpretations, a benefit not typically addressed in traditional
adversarial training methods.

VII. LIMITATIONS

Table II, Figure 5 and Figure 8 show that the proposed tech-
nique is efficient and effective. However, Figure 6 highlights
a limitation in the similarity between the adversarial inter-
pretation maps generated by the MASK interpreter and their
benign counterparts. This can be attributed to the construction
of the MASK interpreter as an optimization procedure, where
even small amounts of noise can lead to variations in the
interpretation maps. Despite this limitation, the interpretation
maps generated by the MASK interpreter still possess mean-
ingful information, which can deceive the human-involvement
process (e.g., expert-checking), as depicted in Figure 5.

Another limitation of the proposed attack is the potential
impact of the universal perturbation on the classification
accuracy of non-source classes. The attack may interfere with
the class predictions of different categories, resulting in mis-
classifications. While the paper focused on the efficiency of the
attack regarding the source and target categories, the impact
on non-source classes was not extensively considered. One
possible solution to address this limitation is to increase the
classification confidence of non-source classes for their actual
categories while ensuring that they are not misclassified. This
can be a potential direction for future research in mitigating
the impact of the attack on non-source classes.

VIII. CONCLUSION

In this paper, we present SingleADV, a targeted adversarial
attack that specifically aims to deceive deep learning models
in a single object category while minimizing the impact on
other categories in both white-box and black-box settings. The
proposed attack exploits interpretations to generate universal
perturbations that produce adversarial examples with similar
interpretations to benign inputs, making them more difficult to
detect. Through extensive experiments, we evaluated the effec-
tiveness of SingleADV on four popular deep learning models
(i.e., VGG-16, ResNet-50, DenseNet-169, and Inception-V3)
and three interpretation models (i.e., CAM, Grad, and MASK),
demonstrating the vulnerability of interpretable deep learning
systems to our proposed attack. We explored existing defense
techniques to mitigate the impact of such adversarial attacks.
Our experiments show that interpretation-based adversarial
training can enhance the robustness of the models against
interpretation-guided attacks.

A. Future Work

Possible future research directions include investigating the
countermeasures and limitations discussed in the paper and
exploring the potential applications of the proposed attack
and defenses in other domains. Future studies can also focus
on studying the effects of the attack given different model
architectures and types of interpretation models.
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