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Abstract—Deep neural network (DNN) models are susceptible
to adversarial samples in white-box and opaque environments.
Although previous studies have shown high attack success rates,
coupling DNN models with interpretation models could offer a
sense of security when a human expert is involved. However,
in white-box environments, interpretable deep learning systems
(IDLSes) have been shown to be vulnerable to malicious manip-
ulations. As access to the components of IDLSes is limited in
opaque settings, it becomes more challenging for the adversary
to fool the system. In this work, we propose a Query-efficient
Score-based opaque attack against IDLSes, which requires no
knowledge of the target model and its coupled interpretation model.
By continuously refining the adversarial samples created based on
feedback scores from the IDLS, our approach effectively reduces
the number of model queries and navigates the search space to
identify perturbations that can fool the system. We evaluate the
attack’s effectiveness on four convolutional neural network (CNN)
models and two interpretation models, using both ImageNet and
CIFAR datasets. Our results show that the proposed approach is
query-efficient with a high attack success rate that can reach more
than 95%, and an average transferability success rate of 69%. We
have also demonstrated that our attack is resilient against various
preprocessing defense techniques.

Index Terms—Adversarial learning, opaque attack, deep
learning, interpretability, transferability.

I. INTRODUCTION

THE tremendous development and deployment of deep
learning methods in practice have brought the attention

of adversaries to exploit vulnerabilities within the application
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pipeline to compromise the results or lead the model to misbe-
have. Numerous studies have been conducted on the robustness
and reliability of deep learning models and their behavior in
adversarial settings, specifically adversarial examples [1]. Ad-
versarial examples can serve various adversarial purposes, e.g.,
poisoning, evasion, model extraction, and inference.

Increasing the security, reliability, and understanding of the
inner workings of deep neural network (DNN) models, several
studies have shown that model interpretability has significant
importance in both theory and practice in terms of resilience
against adversarial attacks. Interpretable deep learning systems
(IDLSes) can be examples of DNN models with interpretable
knowledge representations. Furthermore, existing attacks [2],
[3], [4] against DNN models are found to be ineffective as the
interpretation can reveal adversarial manipulations, i.e., added
perturbations to the example input. However, recent studies
have shown that IDLSes are still susceptible to adversarial
manipulations in white-box settings [5], [6], [7]. It is possible
to generate adversarial examples that can mislead the target
DNN model and deceive its coupled interpreter simultaneously.
For example, an adversarial sample can be misclassified by
the target DNN model and interpreted identically to its benign
interpretation.

Attacks [5], [6], [7] are based on the white-box scenario, in
which the attacker has complete knowledge of the target model
and can achieve a high attack success rate (ASR) with high
confidence. In practice and in most circumstances, the target
model is unreachable. Therefore, this form of attack, i.e., white-
box attack, has limited practicality. On the other hand, opaque
attacks assume that the adversary can only query the model
and access the output without extended knowledge about any of
the system’s components or the model’s parameters. The attack
is therefore more realistic in a opaque environment. The most
common examples of this type of attack are transfer-based [8],
[9], [10] and score-based attacks [11], [12]. Transfer-based
methods involve the use of multiple image transformation tech-
niques to enhance the transferability of adversarial examples.
The score-based approach is model-agnostic and depends solely
on the predicted scores of the model, such as class probabilities
or logits. These attacks estimate the gradient numerically using
the prediction of the model at a conceptual level. In opaque
settings, attacking IDLSes is still an unexplored field, with many
challenges to which this work contributes.

In this article, we conduct an in-depth investigation of the
security of IDLSes in a opaque environment. Specifically, we
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propose a novel opaque attack that generates adversarial ex-
amples to mislead the target DNN models and their coupled
interpreters. We use transfer-based strategies to take advantage
of the transferability of adversarial samples across various DNN
models. In addition, we use score-based techniques to efficiently
guide the search process. This ensures that our attack is query-
efficient and practical in real-world scenarios.

By evaluating our approach against four DNN models (i.e.,
Inception-V3, DenseNet-169, VGG-19, and ResNet-50) and
two interpreters (i.e., CAM and Grad) on various datasets, we
show the possibility and practicality of generating successful
adversarial examples with accurate interpretations in a opaque
environment. In all test cases, the attack had a success rate of
more than 95% with a high degree of similarity of more than
80% in interpretation.

Contributions: We summarize our contributions as follows.
1) We propose a stealthy and query-efficient opaque attack

against IDLSes. We evaluate the effectiveness of the attack
from the perspective of four DNN models (i.e., Inception-
V3 [13], ResNet-50 [14], Densenet-169 [15], and VGG-
19 [16]) and two interpretation models (CAM [17] and
Grad [18]). Our results show that the proposed attack
achieves a high success rate of 95% to 100% in at-
tacking target models and their interpreters on Ima-
geNet and CIFAR datasets, with an average of only 150
queries.

2) We introduce a modified variant of genetic algorithm de-
signed to enhance the practical applicability of the opaque
attack in real-life scenarios. This algorithm optimizes the
attack process, making it more adaptable and effective
against various defense mechanisms and models.

3) We present the robustness of the proposed attack when
using five defense mechanisms: i.e., bit depth com-
pression, median smoothing, JPEG compression, ran-
dom resizing/padding, and adversarial training. The re-
sults show that our approach achieved a success rate
ranging from 81% to 100% and required an average of
only 137 queries when confronting most of the defense
methods.

4) We evaluate the transferability of the attack against dif-
ferent DNN models. The results show high transferability
across various datasets and DNN models, indicating its
effectiveness in generating adversarial examples that can
deceive different models with an average success rate of
69% and an interpretability IoU score of 90%.

Organization: The rest of this article is organized as follows.
Section II surveys related research studies; Section III describes
the notations and terms used in this article and presents the
proposed attack and its underlying mechanisms; Section IV
provides the results of the attack effectiveness, robustness, and
transferability against DNN and interpretation models; Sec-
tion V explains the existing limitations and future work. Finally,
Section VI concludes this article.

II. RELATED WORK

This section provides an overview of the related research on
attacks against DNN models. Specifically, it covers previous

work on both white-box and opaque attacks that employ vari-
ous techniques, including transfer-based attacks, interpretation-
based attacks, and score-based attacks.

A. Transfer-Based Attacks

Previous research has shown that adversarial samples gen-
erated to attack specific DNN models can also be used to
fool other DNN models. Such attacks, known as transfer-based
attacks [10], [19], use adversarial inputs generated by white-box
attacks against DNNs to attack other opaque models. Huang
et al. [9] proposed a method that adds perturbations to the
hidden layers of a model to enhance the transferability of ad-
versarial samples. Furthermore, recent work [20] addresses the
issue of weak transferability in opaque models by introducing a
transfer-based sparse attack method, called adaptive momentum
variance-based iterative gradient method with a class activation
map. This method uses an adaptive momentum variance and a re-
fining perturbation mechanism to enhance the transferability of
adversarial examples while limiting the intensity of perturbation.

B. Interpretation-Based Attacks

Adversarial attacks based on interpretation generate samples
that can deceive both the target DNN models and their inter-
preters simultaneously [5]. Abdukhamidov et al. [6] proposed
white-box attacks called AdvEdge and AdvEdge+ against DNN
models and their coupled interpreters. These attacks demonstrate
the vulnerability of DNN models that rely on interpretable
features for decision-making and highlight the need to consider
the interpretability of DNN models in addition to their accu-
racy and robustness. The proposed attack provides a valuable
tool to assess the interpretability of DNN models and their
susceptibility to adversarial attacks. Abdukhamidov et al. [21]
proposed the single-class target-specific adversarial attack called
SingleADV to craft a universal perturbation that leads the target
model to misclassify a particular category as a different, in-
tended category, while maintaining precise and highly relevant
interpretations.

C. Score-Based Attacks

Heuristic methods, such as evolution strategies and genetic
algorithms, have been used to devise adversarial attacks that can
generate visually imperceptible samples to deceive DNN mod-
els [12]. GenAttack is a gradient-free optimization attack that
can generate adversarial samples against opaque models with
fewer queries. Another study proposed a query-efficient attack
called MGAAttack [11], which uses transfer-based techniques
to improve its efficacy. These attacks highlight the vulnerability
of DNN models to adversarial attacks and the need to develop
more robust defense mechanisms [22] to enhance their security.
By studying these attacks, researchers can identify weaknesses
in DNN models and devise better defenses against adversarial
attacks.

III. QUERY-EFFICIENT SCORE (QUSCORE): METHODS

The section describes QuScore in opaque settings with a
detailed explanation of the adopted methods.
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A. Concepts and Notations

In this section, we introduce the notation, terms, and symbols
used in this article.

1) Classifier: Image classification is the primary focus of this
work, and we employ two types of DNN models: white-box and
opaque models. In this article, f(x) = y ∈ Y denotes a classifier
in a opaque setting (target DNN model), and f ′(x) = y ∈ Y
denotes a classifier in a white-box setting (source DNN model),
where y refers to a single category from a set of categories Y .

2) Interpreter: We adopt an existing interpretation model g
to produce an interpretation map m to display the importance
of features for a sample x, which are found by a classifier
f : g(x; f) = m. For our approach, post hoc interpretability is
used [23], [24], [25], [26], where an interpretation model g ob-
tains information about the sample input x and its classification
decision by the classifier f to generate an attribution map. This
type of interpretation requires another model to interpret the
decision process of the current classification model.

3) Adversarial Attack: Pixel perturbation attack known as
projected gradient descent (PGD) [2] is adopted by AdvEdge
attack to generate perturbations. It generates an adversarial
sample x̂ to cause the source DNN model f ′ to misclassify x̂ into
another category: f ′(x̂) �= y. PGD is implemented as follows:

x̂(i+1) =
∏
Bε(x)

(
x̂(i) − α · sign(∇x̂�adv(f

′(x̂(i))))
)

where
∏

is the projection operator, α is the learning rate, �adv

is the loss function (i.e., cross entropy), Bε(x) is the norm ball
limited with the specific range ε, and x̂(i) is x̂ at iteration i.

4) Threat Model: In this work, we consider a opaque setting,
where the adversary has limited access to the target DNN clas-
sifier f (model output). Specifically, the adversary can query
the target model and receive the output probabilities or scores
for each class, but cannot access the model’s internal parame-
ters or architecture. This setting resembles a realistic scenario
for the attack, simulating conditions where the adversary can
only observe the model’s predictions. We assume the following
specifics within our threat model.

1) Adversarial knowledge: The adversary can query the tar-
get model and obtain the output probabilities or scores
corresponding to each class. That is, the adversary has no
access to the internal parameters, architecture, or train-
ing process of the target model. Moreover, the adver-
sary may have some knowledge of the general type of
data on which the target model is trained (e.g., images,
text) but does not have access to the specific training
dataset.

2) Adversarial capabilities: The adversary can train a source
model that can be used to generate the initial population
for the attack. The adversary can utilize public datasets
to train the source model. In addition, the adversary can
design and train interpretation models based on the source
classifier and public datasets.

The threat model reflects realistic attack conditions, such
as those encountered in practical applications where models

are exposed through APIs and only the prediction scores are
accessible to users.

B. Attack Formulation

Attacking IDLSes requires fooling both a DNN model and
its associated interpretation model. To increase the stealthiness
of the attack, we use AdvEdge [6] to generate the initial pop-
ulation of candidates for our attack. We note that AdvEdge is
a white-box attack that takes advantage of edge information in
the input sample to generate an adversarial sample to mislead a
DNN classifier f ′ and its interpretation model g simultaneously.
Our modified genetic algorithm uses these initial candidates to
produce generations of mutated adversarial examples that can
succeed in a opaque attack to make it more practical in real-life
scenarios. The main objective of the attack is to generate an
adversarial sample x̂ by fulfilling the following conditions:

❶ x̂ should fool the source DNN model f ′: f ′(x̂) �= y;
❷ an interpretation map m̂ of the adversarial sample x̂ gen-

erated by an interpreter g should be similar to the interpretation
map m of the benign sample x: g(x̂; f ′) = m̂ s.t. m̂ ∼= m;

❸ the adversarial sample x̂ and its benign version x should
be visually imperceptible;

❹ The amount of noise is restricted to the edge of the image
input. At a high level, the attack framework is formulated as
follows:

min
x̂

: Δ(x̂, x) s.t.

⎧⎨
⎩
f ′(x̂) �= y, s.t. ‖x̂− x‖∞ ∈ {−ε, ε}
g(x̂; f ′) = m̂, s.t. m̂ ∼= m
Δ(x̂, x) ∼ edge(x ∩m).

(1)

Equation (1) ensures that the prediction of the adversarial
sample is not equal to the original category; an interpretation
map of the adversarial sample is similar to the interpretation
map of its benign version; the added perturbation lies within the
edges of the sample that intersect with the interpretation
map of the sample. The attack aims to minimize the
overall adversarial loss (�adv) considering the classification
loss �prd(f

′(x)) = − log(f ′(x)) and the interpretation loss
�int(g(x; f

′,m) = ‖g(x; f ′)−m‖22.
The overall adversarial loss is then defined as follows:

�adv = min
x̂
�prd(f

′(x̂)) + λ �int(g(x̂; f
′),m) (2)

where the hyperparameter λ balances �prd and �int. The final
adversarial framework can be described as follows:

x̂(i+1) =
∏
Bε(x)

(
x̂(i) −Nw α. sign(∇x̂�adv(x̂

(i)))
)

(3)

where
∏

is the production operator, Bε is a norm ball, α is the
learning rate, x is the sample input, and x̂(i) is the adversarial
sample at the ith iteration.Nw is the edge operator function that
is used to optimize the location and magnitude of the added
perturbation:

d =
√
d2h + d2v

Nw = d ∩m
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Fig. 1. Framework of QuScore: After generating successful adversarial examples using AdvEdge built upon the PGD attack on the source model, these examples
are introduced as the initial population candidates for genetic operation-based refinement. Each candidate is evaluated against the target model (i.e., opaque model)
to assess its effectiveness. If a candidate is ineffective, two distinct samples—one highly impactful and the other less so—are chosen for genetic crossover and
mutation. This process generates new samples subjected to strict evaluation against the target model. The iterative process continues, adapting and refining the
perturbations, until an evolved sample is produced that successfully deceives the target IDLS.

where d is an image that contains edges of the samplex extracted
by d =

√
d2h + d2v . dh and dv contain the sample’s horizontal

and vertical edge information. The attack uses the intersection
of the edges of a sample image and its interpretation map to
extract important regions.

As in (3), AdvEdge adopts the PGD framework [2] to generate
perturbation, and it is controlled by (2) to fool the target DNN
model and mislead the coupled interpreter. This approach is used
in a white-box scenario where the model’s internal structure is
known. However, to adapt this strategy for opaque environments
where such detailed knowledge of the target DNN model is
unavailable, we focus on creating an efficient and adaptive
method that retains the precise positioning of perturbations while
exploring an adequate adversarial search space without direct
insight into the target DNN model. To this end, we leverage the
transferability property of attacks. This property allows adver-
sarial examples crafted on one model to be practical on another,
even without explicit knowledge of the second model’s architec-
ture. We propose a genetic algorithm-based attack to generate
perturbations that are strategically positioned and effective in
the opaque scenario. The attack is described in Section III-C.

C. QuScore Optimization

Traditional genetic algorithms are ineffective for our objec-
tives as they primarily target classifiers. To address this, we in-
troduce our modified version of the genetic algorithm, designed
for gradient-free optimization. Our algorithm considers model
interpretation and significantly advances the effectiveness of ge-
netic progression in navigating complex optimization challenges
(see Fig. 1). First, we generate adversarial samples against a
“source” DNN model in a white-box setting and use them as
the initial population for genetic operators. Genetic operators
update the initial population to produce new generations of these
adversarial examples to deceive a opaque “target” DNN model
and mislead its coupled interpreter. Using AdvEdge in the initial
seed generation, the strategy of our algorithm involves main-
taining original perturbation positions while adding minimal
perturbations with the aim of creating adversarial inputs that
can fool the opaque model and its coupled interpreter. This is
done through mutations and crossovers to increase the chances
of generating effective adversarial examples in a opaque setting.

Algorithm 1: QuScore in Opaque Settings.

Algorithm 1 shows the detailed information of the attack.
Genetic operators of our attack are as follows: initialization (line
1 and 2), selection (line 4–6), crossover (line 7), mutation (line
8), and population update (line 12).

Initialization: Seeding the initial population is the first phase
of the genetic operators. Although the process is executed only
once during the attack process, the initial population is crucial
to the convergence of the technique. The population with an
optimal solution helps the technique converge quickly. In our
case, we generate adversarial samples using the AdvEdge attack,
which is explained in Section III-B and provide them as the
initial population Ψ : {ψ1, ψ2, . . . , ψm}, wherem is the size of
the population.

Fitness function: This is also known as the evaluation phase.
It is used to assess the quality of individuals in a population
and help evolve toward the optimal population. In other words,
it evaluates how close the given sample is to meet the attack
requirements. In our attack, we evaluate each individual in the
population by applying a loss function (i.e., cross entropy) as
the fitness function: argmaxx̂L(x̂, y) s.t. Δ(x̂, x) ≤ ε. Loss
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values reflect the fitness scores of each sample in the population.
The desired adversarial samples have higher fitness scores, while
others have lower fitness scores.

Selection: This step helps a new generation inherit genetic
information by selecting samples. In traditional genetic algo-
rithms, the proportionate fitness selection technique [27] is
widely used, in which samples in the population with high fitness
scores have higher chances of propagating their features to the
next generation. The technique helps generate better adversarial
samples to fool a DNN model, but those samples can have higher
chances of being detectable when an interpreter is applied. In our
case, our main objective is to generate undetectable adversarial
samples by an interpreter. Based on the objective, we randomly
selected two samples from the population, one with a higher
fitness score and the second with a lower fitness score. We refer
to them as “alpha” (larger fitness scores) and “omega.” By doing
that, we try to keep the perturbation in the newly generated
sample’s area that is considered important by the target DNN
model and its interpreter. After the process, the selected samples
are passed to the crossover phase.

Crossover: The phase is also called recombination. The func-
tion combines genetic information from the selected parents to
produce new offspring. In traditional genetic algorithms, two
individuals with high fitness scores are selected to pass on their
genetic information to a new offspring. In our case, we have an
alpha and an omega after the selection process. We generate a
new offspring (adversarial sample) by transferring the genetic
data of the alpha and omega with the predefined crossover rate cr:
ψchild = ψalpha ∗ Scr + ψomega ∗ (1− Scr), where Scr is a matrix
with values of 1 and 0. ψalpha and ψomega are the samples that
we selected in the previous step. Scr is generated based on the
crossover rate cr as follows:

Scr =

{
1, rand(0, 1) < cr
0, otherwise

where rand(0, 1) generates uniformly distributed numbers be-
tween 0 and 1, cr is the probability of crossover (i.e., the
crossover rate). In the experiment, we use the default value for
the crossover rate, which is 0.7.

Mutation: The process diversifies the population and helps
reach the points outside the regions of the local optima [28].
The attack requires enough diversity in the population, which
the mutation function can introduce. Mutation can be carried
out via binary encoding: ψchild = −ψchild ∗ Smr + ψchild ∗ (1−
Smr), where Smr is a binary matrix that is generated based on the
mutation rate mr:

Smr =

{
1, rand(0, 1) < mr
0, otherwise

where mr is the probability of mutation (i.e., the mutation rate).
We use the default value for the mutation rate in the experiment,
1e-4. Fig. 2 illustrates the process.

Population update: For continuous evolution, the population
should be updated by keeping the alphas and replacing the
omegas with new generations. In this step, the selected omega
is replaced with the mutated offspring.

The size of the population is an important parameter that
directly affects the ability to search for an optimal solution in the

Fig. 2. Example illustration of the mutation process. Smr is the binary matrix
generated based on mutation probability.

search space. As our attack must satisfy more requirements than
traditional attacks, the adversarial search space becomes smaller.
In that case, having a large population size is not sufficient, which
can lead to increased time complexity and make the search more
complex by having more generations converge. Taking this into
consideration, we use 5 as the population size for our experiment.

In summary, AdvEdge generates adversarial samples against a
source DNN modelf ′ and its coupled interpreter g in a white-box
environment. Then, we provide those generated samples as the
seed for the initial population. The algorithm evaluates the
fitness scores of the population by sending them to the target
DNN model f (opaque). In our case, the population size is five.
Therefore, we use five queries to evaluate the initial population.
When evaluating the initial population, if one of the individuals
meets the attack requirements as the desired adversarial sample,
the algorithm stops further steps. Otherwise, it randomly chooses
two individuals (an alpha and an omega) from the population
and calculates their fitness scores if any child is generated from
a previous iteration (this process is applied if this is not the
first iteration). After that, it generates a new offspring from
alpha and omega by conducting a crossover process. A newly
created offspring is mutated in the mutation phase. Finally, the
omega is replaced by that offspring, and the alpha is kept. The
attack repeats the steps until it succeeds or reaches the query
threshold.

D. Effectiveness of QuScore

The effectiveness of QuScore is based on several concepts as
follows.

Leveraging Transferability: QuScore takes advantage of
the transferability property of adversarial examples. Using
AdvEdge to generate an initial population for MGA against a
source model provides a strong starting point for the attack with
perturbations likely to transfer to the target model, offering a
significant advantage over random initialization.

Perturbation Placement: The attack generates perturbations
concentrated in semantically important areas of the image, as
determined by the source model and interpreter.

Adaptive Search in Opaque Settings: Adopting MGA with
our approach allows for perturbation optimization with limited
information from the target model, which allows efficient navi-
gation of the search space in opaque settings.

Balance of Exploration and Exploitation: The selection phase
of QuScore chooses both high and low fitness samples, com-
bined with tuned mutation and crossover operations, allows the
algorithm to exploit promising solutions and explore new areas
of the search space.
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Dual Optimization Objective: QuScore simultaneously op-
timizes for fooling the classifier and maintaining accurate in-
terpretation. These factors enables QuScore to generate high-
quality adversarial examples that are effective against opaque
models.

IV. EXPERIMENTS AND RESULTS

This section provides the settings and metrics used for our
experiments and the results of the proposed attack. For the
reproducibility of our experiments, our code, data, and models
are available online.1

A. Experimental Settings and Evaluation Metrics

1) Datasets: Our experiment uses ImageNet, CIFAR-10, and
CIFAR-100 datasets, which cover 1.2 million images for 1000
categories, 60 000 images for ten categories and 60 000 images
for 100 categories, respectively. We randomly select an image
from each category of the validation set in ImageNet and testing
sets in CIFAR-10 and 100 (overall 3000 images, 1000 images
per dataset), which are correctly classified by the selected DNN
model f with a classification confidence score higher than 60%.
In the experiment, we set ε to 8 for the datasets on the scale of [0,
225], which is similar to the settings of the AdvEdge attack [6].
By experimenting with the selected images, we ensure that the
proposed attack is valid across all categories of the selected DNN
models.

2) Classifiers: Our experiment includes different well-
known DNN models. They include Inception-V3, DenseNet-
169, VGG-19, and ResNet-50, which demonstrated high perfor-
mance with 76.6%, 77.9%, 71.3% and 77.2% top-1 accuracy on
ImageNet, respectively. We use DenseNet-169 and ResNet-50
for two purposes in our evaluation. In our study, we chose to
use pretrained versions of these four models because of their
proficiency in learning robust feature representations from our
used datasets. They are used as source DNN models (white-box
models) to implement the transfer-based attack part, and they are
also used as target DNN models (opaque models) to be attacked.
Note that we do not use those two models to attack themselves.
Specifically, we do not use ResNet-50 (in white-box setting) to
attack ResNet-50 (in opaque setting), and the same is true for
DenseNet-169 to create a realistic opaque attack scenario. For
hyperparameters, as we have a limited adversarial search space,
we set the maximum query to a larger number, which is 50 000.
In the transfer-based approach, the step size α and the number
of iterations are set to 1/255 and 300, which are the same as the
AdvEdge attack settings [6].

3) Interpreters: CAM [17] and Grad [18] interpreters are
adopted as the representatives of interpretation models. They
represent different types of interpretation models, as they use
different characteristics of DNN models. CAM uses the feature
maps of convolutional layers in a DNN model to generate
interpretation maps:mc =

∑
i wi,cai(j, k), whereai(j, k) is the

activation of the ith channel at the spatial location (j, k) andwi,c

is the weight of the ith input and the cth output in the linear layer
of a DNN model. Grad calculates the gradients of a prediction

1[Online]. Available: https://github.com/InfoLab-SKKU/QuScore

of a DNN model based on a sample input:m = |∂fy(x)∂x |. We set
λ in (2) at 0.007 and 0.204 for Grad and CAM, respectively [6].
We use their open-source implementations for the experiment.

4) Evaluation Metrics: We apply different evaluation met-
rics as we use different DNN classifiers and interpreters. The
following metrics are used to evaluate the attack.

1) ASR: Calculates the ratio of successful attack cases
to total attack cases: {#successful_test_cases} ÷
{#total_test_cases}. A successful test case is one
that causes the target model to misclassify an image,
which is the ultimate goal of the attack. A higher success
rate indicates that the attack algorithm is more effective
in generating successful adversarial examples.

2) Average queries: The efficiency of the attack algorithm
is evaluated using the metric of the average number of
queries required to generate successful adversarial exam-
ples in a opaque setting. This metric is important as it
reflects the amount of information the attacker needs to
obtain from the target model. A lower average number of
queries indicates that the attack algorithm is more efficient
in generating adversarial examples with limited access to
the target model.

3) Noise rate: The noise rate metric is used to evaluate the
quality of adversarial examples generated by the attack
algorithm. It measures the amount of noise that needs
to be added to the original image to create a successful
adversarial example. A lower noise rate indicates that
the attack algorithm is more effective in generating high-
quality adversarial examples with smaller amounts of
noise. The amount of disturbance is calculated using the
structural similarity index (SSIM) [29]. SSIM measures
the similarity score, and we find the nonsimilarity portion
using that score (i.e., noise_rate = 1− SSIM).

To evaluate the effectiveness of the attack against interpreters,
we employ the following metrics.

1) Qualitative comparison: The metric measures the ability
of the attack algorithm to generate adversarial examples
that are difficult to distinguish from benign cases based on
the visual inspection of images and their interpretations.

2) Intersection-over-union (IoU) Test: We use the metric to
measure the similarity of interpretation maps. In the met-
ric, interpretation maps are converted into binary-valued
maps based on a threshold to compare adversarial maps
with benign ones. We use different numbers as threshold
values (from 0.1 to 1.0), resulting in an overall 9 threshold
values for each interpretation map. Then, we measure the
IoU scores using those threshold values per interpretation
map and calculate their average. The IoU metric is evalu-
ated only on successful adversarial examples. This ensures
that we measure the similarity of interpretation maps
specifically for adversarial examples that have success-
fully fooled the target model. The IoU score is calculated
as follows: IoU = Area of Overlap/Area of Union By
averaging the IoU scores across all thresholds, we obtain
a comprehensive measure of similarity.

We use these metrics to calculate the effectiveness of the attack
against DNN classifiers with and without defenses.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on April 30,2025 at 02:52:30 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/InfoLab-SKKU/QuScore


ABDUKHAMIDOV et al.: STEALTHY QUERY-EFFICIENT OPAQUE ATTACK AGAINST INTERPRETABLE DEEP LEARNING 7

TABLE I
SUCCESS RATE, AVERAGE QUERIES, AND AVERAGE NOISE OF QUSCORE AND THE HYBRID ATTACK AGAINST DIFFERENT CLASSIFIERS AND INTERPRETERS

TESTING ON 1000 IMAGES FOR EACH DATASET (TOTAL 3000 IMAGES)

B. Attack Effectiveness Against DNNs

In this section, we discuss the effectiveness of our proposed
attack on a set of four popular DNNs as target models, namely,
Inception-V3, ResNet, DenseNet, and VGG. Our attack is im-
plemented and tested on two interpreters with two source models
as follows: (1) CAM with ResNet, (2) CAM with DenseNet, (3)
Grad with ResNet, and (4) Grad with DenseNet. We compare
our results with the existing attack, i.e., “Hybrid Attack” [30].
We used the source code provided by the authors of this article
and the same setting as ours for a fair comparison.

While our approach follows a similar high-level protocol
to [30], utilizing a white-box attack followed by opaque re-
finement, it introduces several novel elements that significantly
advance the state of the art in attacking IDLSes. Unlike [30],
which focuses solely on fooling classifiers, our method tackles
the more challenging dual objective of misleading both the
classifier and its coupled interpreter. We achieve this by utilizing
AdvEdge for initial population generation, taking into account
both classification and interpretation from the beginning. Our
modified genetic algorithm, designed with a specific selection
process and genetic operators, enables a more thorough explo-
ration of the adversarial space while preserving perturbations in
areas of semantic significance. In addition, our method shows
improved adaptability to different opaque situations and poten-
tially increased query efficiency.

Table I reports the results of our experiments on the scenarios
mentioned above. The table uses a different color in the existing
attack part to show that the results are the same in both interpreter
parts. This is because the attack method does not change for
different interpreters, as the attack does not use an interpreter in
the attack process.

1) CAM Interpreter With ResNet: For the ImageNet dataset,
the proposed opaque attack shows a high success rate of 0.95 to
1.00 for InceptionV3, DenseNet, and VGG target models with
an average number of queries between 179.80 and 438.24 and an
average noise rate of 0.20 ± 0.06. In contrast, the Hybrid Attack
demonstrates similar success rates but requires significantly
more queries (ranging from 369.60 to 890.48) and demonstrates
a higher average noise rate of 0.64 ± 0.05.

For the CIFAR-100 and CIFAR-10 datasets, the proposed
attack maintains a 100% success rate across all target models
with fewer queries needed (i.e., ranging from 60.31 to 145.00
for CIFAR-100 and 75.18 to 153.03 for CIFAR-10) and a lower
average noise rate of 0.04 ± 0.03. The existing attack, however,
shows slightly reduced success rates (0.88 to 0.90) and again
requires more queries, suggesting that the proposed attack is
more efficient and stealthy compared to it.

2) CAM interpreter with DenseNet: The proposed attack
with a CAM interpreter and DenseNet as the source model shows
success rates of 0.95 to 1.00 on ImageNet, with a lower average
number of queries (158.33 to 363.31) and noise (0.20 ± 0.06)
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Fig. 3. Attribution maps of benign and adversarial samples using QuScore with respect to Grad and CAM on ResNet, DenseNet as source models, and Inception,
VGG as target models. Samples were randomly selected from ImageNet and CIFAR datasets.

compared to the Hybrid Attack. On CIFAR-100 and CIFAR-10,
it consistently reaches a success rate of 1.00 with even fewer
queries and noise.

3) Grad interpreter with ResNet and DenseNet: Using the
Grad interpreter, the proposed attack achieves success rates of
1.00 across CIFAR datasets and 0.95 to 1.00 on ImageNet when
targeting the ResNet and DenseNet models. The attack requires
fewer queries, with an average ranging from 76.82 to 297.86,
and maintains a low noise level of 0.04 ± 0.03 on CIFAR and
0.20 ± 0.06 on ImageNet. These results are better than those
of the Hybrid Attack, which requires more queries and higher
noise rates.

In all cases, the proposed attack achieves high success rates
with fewer queries and less noise, indicating a more efficient
attack compared to the Hybrid Attack. This is especially signifi-
cant in the context of more complex datasets, such as ImageNet,
where the effectiveness of an attack is crucial for its stealth and
success. The consistency in the results of the proposed attack,

with a median of 5.00 queries across datasets and interpreters,
further indicates its reliability.

Observation 1—Effectiveness against DNNs: The results show
that the proposed attack was highly effective against all classi-
fiers and interpreters, achieving success rates typically above
95% and requiring relatively few queries, with an average
ranging from 158.33 to 438.24 while maintaining a low av-
erage noise rate around 0.20.

C. Attack Effectiveness Against Interpreters

In this part, we explore the effectiveness of our attack in
comparing the benign and adversarial interpretations based on
the qualitative comparison and the IoU test.

1) Qualitative Comparison: In this comparison, we differ-
entiate whether the attribution map of our adversarial sample is
similar to the attribution map of benign input. Fig. 3 illustrates a
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Fig. 4. IoU scores of interpretation maps generated by QuScore and Hybrid Attack [30] using Grad (top row) and CAM (bottom row) as interpreters, and ResNet
and DenseNet as source models for ImageNet and CIFAR datasets. The y-axis represents the target models. The ensemble model is the combination of ResNet and
DenseNet models in the existing attack. The table shows the comparison of IoU results between Our Attack and the Hybrid Attack on various datasets and cross
models.

set of examples of ImageNet and CIFAR datasets for both benign
and adversarial samples with their attribution maps. Based on
selected examples, it can be seen that it is difficult to distinguish
between benign and adversarial attribution maps on CAM in-
terpreter. However, as mentioned before, the Grad interpreter
is very specific in highlighting the area on the attribution map,
which makes it difficult to deceive. Even though it is challenging
to mislead the Grad interpreter, our attack succeeds in generating
adversarial examples that have very similar attribution maps to
attribution maps of benign inputs. We can conclude that our
adversarial attribution map is as reliable as the benign attribution
map.

2) IoU Test: We evaluate the similarity between benign and
adversarial attribution maps using the IoU score. The IoU score
is calculated by finding the intersection of the maps, and as it
approaches 1, the overlap between the interpretation maps be-
comes complete, leading to indistinguishability between them.
The performance of QuScore and the existing attack on different
DNN models with Grad and CAM interpreters is summarized
in Fig. 4. In the right part of the figure, the results of the Hybrid
Attack are provided. As shown, the boxplots on the right show
that the existing attack has low IoU scores, indicating that the
attack can be easily detected by the interpreters on different
models and datasets. This suggests that the attack can be de-
tectable and ineffective against the interpretation models tested.
Based on the result of our approach, the findings showed that
the Grad interpreter is more effective than the CAM interpreter
in conducting attacks on all datasets, with an average IoU score
closer to 1. This is shown in the figure, where the median IoU
score is greater than 0.9 in all datasets. For the CAM interpreter,
our attack works exceptionally well on ResNet and DenseNet,

with well-balanced IoU scores and median scores above 0.9,
while stability on VGG and Inception-V3 varies.

Observation 2—Effectiveness against interpreters: The pro-
posed attack succeeds in generating adversarial interpretation
maps that are indistinguishable from corresponding benign
interpretation maps. The attack shows a significant opaque
attack capability with median IoU scores greater than 0.8.

D. Attack Effectiveness Against Defensive IDLSes

This section focuses on evaluating the performance of our at-
tack in the presence of various defense techniques. Specifically,
we investigate the impact of five commonly employed prepro-
cessing defense strategies, namely, random resizing and padding
(R&P) [31], bit depth reduction [32], median smoothing [33],
JPEG compression [32], and adversarial training [34] on the
efficacy of our attack. It is important to note that the first four
defense techniques do not modify the underlying structure of
the model; rather, they alter the input sample. The last technique
requires the model to be trained on adversarial examples to
increase its robustness. Fig. 5 displays the examples of the
generated adversarial samples of the attack with/without defense
mechanisms.

To experiment, we selected Inception-V3 and VGG as our
target models, as they possess different architectures compared
to our source models (ResNet and DenseNet). We present the
results of our attack against the aforementioned defenses in Table
II, with all experiments performed using the default values of
the defense techniques. Fig. 6 showcases the IoU scores of the
interpretation maps generated by our attack against five defense
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Fig. 5. Adversarial samples with attribution maps generated using QuScore with/without defense techniques using Grad, CAM on ResNet, DenseNet as source,
Inception, and VGG as target models. The examples were selected at random from the ImageNet and CIFAR datasets. In the figure, M.S. and A.T. stand for median
smoothing and adversarial training, respectively.

TABLE II
SUCCESS RATE, AVERAGE QUERIES, AND AVERAGE NOISE OF QUSCORE AGAINST IDLSES WHEN USING VARIOUS DEFENSES
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Fig. 6. IoU scores of interpretation maps generated by QuScore against five different defenses using Grad and CAM interpreters with Inception-V3 and VGG as
target models and ResNet and DenseNet as source models on ImageNet and CIFAR datasets.

techniques, using Grad and CAM interpreters, and ResNet and
DenseNet as source models, InceptionV3 and VGG as target
models, in the ImageNet, CIFAR-100, and CIFAR-10 datasets,
respectively.

1) R&P: Comparing the results of the datasets, we can see
that in general, the success rates of the attack are lower on the
ImageNet dataset compared to the CIFAR-100 and CIFAR-10
datasets. For example, the success rates on the ImageNet dataset
range from 0.82 to 0.95, while on the CIFAR datasets, the success
rates range from 0.96 to 0.99. Furthermore, we can observe that
the average number of queries required to successfully execute
the attack is higher on the ImageNet dataset (ranging from 77.06
to 248.9) than on the CIFAR datasets (ranging from 35.33 to
157.41). The lower success rates and the higher number of
queries on the ImageNet dataset than CIFAR datasets can be
attributed to a larger size, greater image diversity of the dataset
and its complexity, and larger search space to generate effective
adversarial perturbations.

In terms of IoU score, we observe that on the Grad interpreter,
our attack performs significantly well, with consistently high
IoU scores across both target models. When CAM interpreter
is used, we observe that our attack’s performance on Inception-
V3 with ImageNet dataset is somewhat unstable, whereas the
results obtained on the CIFAR dataset are more reliable. The
difference can be attributed to each interpreter’s interpretability
and robustness characteristics.

2) Bit-Depth Reduction: When this defense is used, it takes
more queries for the attack to produce effective adversarial

samples. This suggests that the defense technique is more robust
than the other defenses. However, the success rate of the attack
is high, ranging from 0.96 to 1.00 and the average queries
required to succeed in the attack range from 52.38 to 514.87,
with the lowest average queries required for the ResNet model
with the Grad interpreter against VGG and the highest average
queries required for the ResNet model with the CAM interpreter
against Inception-V3. The attack with this defense showed a
similar trend as R&P in performance based on the IoU score. It
performed well in the Grad interpreter, consistently achieving
high scores in all target models. And the attack shows instability
in the CAM interpreter with Inception-V3 and the ImageNet
dataset.

3) Median Smoothing: Regarding the success rate, the attack
has a high success rate for all datasets ranging from 0.96 to 1.00.
Regarding the average queries, the attack requires more queries
for the ImageNet dataset than for the CIFAR-100 and CIFAR-10
datasets. For ImageNet, the average queries range from 89.55
to 315.49, while for CIFAR-100 and CIFAR-10 datasets, the
average queries range from 41.05 to 144.64 and 56.63 to 141.73,
respectively. As for the median queries, the attack requires only
five queries for all datasets and target models. Compared to
previous defense methods, the technique required more queries
on both datasets. This indicates that it effectively preprocesses
adversarial samples. Furthermore, when this defense is used, the
attack demonstrates IoU performance comparable to previous
defenses. Although it requires more queries, the attack still
achieves similar IoU scores.
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Fig. 7. IoU scores of interpretation maps generated by the transferred models. The adversarial samples, originally intended to compromise given models, are
transferred to alternative models using the ImageNet and CIFAR datasets.

4) JPEG Compression: The ASR varies between 0.81 and
0.99, with higher success rates achieved on the CIFAR dataset
than on the ImageNet dataset. The average queries required for
successful attacks ranged from 61.01 to 454.78, with the median
queries being five for all combinations, indicating that the attack
can successfully break the defenses with a small number of
queries. Note that most defense techniques are designed to
reduce the noise in adversarial examples. However, the average
noise rate remains unchanged, around 0.21 ± 0.06 and 0.04 ±
0.03. As depicted in Fig. 5, the added perturbation in the samples
is difficult to detect visually, even with the implementation of
defenses.

5) Adversarial Training: Adversarial training has proven to
be a robust defense mechanism against adversarial attacks. To
illustrate its effectiveness, we report the performance of ad-
versarially trained models on ImageNet when evaluated using
AutoAttack [35]. The VGG19 model achieves a clean accu-
racy of 60.1% and an AutoAttack robustness of 20.5%. The
Inception-V3 model demonstrates better performance, with a
clean accuracy of 67.3% and AutoAttack robustness of 30.2%.
Table II shows the results of those models against our attack. The
success rate of the attack against models with adversarial training
varies notably, indicating its effectiveness as a defense. Success
rates range from 0.37 to 0.46, significantly lower than other
defenses. This reduction highlights the robustness provided by
adversarial training. The attack requires more queries, with
averages from 295.58 to 998.75, suggesting the attack faces
more challenges against this defense. Despite this, the average
noise rate remains fairly consistent, around 0.20 ± 0.06 and
0.04 ± 0.03, similar to other defenses. This implies that while
adversarial training is effective in reducing success rates, it
does not necessarily lead to a noticeable change in the noise
in adversarial examples.

Observation 3—Effectiveness against Defensive IDLSes: The
proposed attack generally maintains resilience against vari-
ous defenses, demonstrating its ability to overcome enhanced
security measures in most scenarios.

TABLE III
SUCCESS RATE OF ADVERSARIAL SAMPLES IN TERMS OF ATTACK

TRANSFERABILITY

E. Attack Transferability

Table III provides the success rate of adversarial samples
generated against specific DNN models as target models using
source models, which are then transferred to alternative DNN
models on ImageNet, CIFAR-100, and CIFAR-10 datasets. The
results showed that the proposed attack method exhibits high
transferability across different datasets with a high success rate.
Specifically, the ASR in transferability achieved over 50% across
all datasets, indicating the effectiveness of the proposed method
in generating adversarial examples that can fool different mod-
els trained on different datasets. Fig. 7 shows the IoU scores
of the interpretation maps of adversarial samples regarding
transferability. The scores indicate the similarity between the
interpretation maps of adversarial samples and their benign
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TABLE IV
AVERAGE CLASSIFICATION CONFIDENCE SCORES OF THE PROPOSED ATTACK

AGAINST DIFFERENT CLASSIFIERS AND INTERPRETERS TESTING ON 1000
IMAGES FOR EACH DATASET (TOTAL 3000 IMAGES)

TABLE V
COMPARISON OF QUSCORE WITH BASES ON 1000 IMAGES

ones. The results indicate that the attack transferability across all
datasets and models is high. Specifically, the IoU scores of the
interpretation maps of adversarial samples are similar to those of
their benign counterparts. This indicates that adversarial samples
are highly transferable across DNN models.

Observation 4—Attack Transferability: The proposed attack
shows high transferability across various DNN models while
maintaining high similarity in interpretation maps using dif-
ferent datasets.

V. DISCUSSION

A. Additional Experiments and Comparisons

1) Attack Comparison with BASES [36]: To provide a com-
prehensive evaluation of our proposed attack method, we com-
pared it with the recent BASES attack method. For a fair
comparison, we used the same 1000 images for both attacks
and maintained the same number of surrogate models. The
experiments were conducted using ResNet50 and DenseNet169
as source models, targeting InceptionV3 and VGG models. We
set a query limit of 500, as the BASES attack does not require
many queries [36]. The results are summarized in Table V.

The result show that QuScore achieved a higher success rate of
0.94 and 0.93 against InceptionV3 and VGG, respectively, com-
pared to 0.89 and 0.91 for BASES. While BASES demonstrated
a lower average query count (2.81 ± 2.74 for InceptionV3 and
2.11± 2.48 for VGG) than QuScore (47.96± 98.45 and 25.61±
54.75, respectively), QuScore significantly outperformed in IoU
scores, achieving 0.89 and 0.84 compared to 0.33 and 0.35 for
BASES. The median query count for QuScore was 5.00 for both
target models, slightly higher than the 2.00 median for BASES.

We note that the BASES [36] heavily relies on the number of
surrogate models. In the original BASES paper [36], the authors

TABLE VI
PERFORMANCE OF QUSCORE AGAINST ROBUSTBENCH MODELS ON 1000

IMAGES.

TABLE VII
RESULTS OF QUSCORE WITH ε = 2

255 (1000 IMAGES)

used 20 surrogate models to achieve high ASR. For further eval-
uation, we also conducted experiments with BASES using 20
surrogate models on the same images, targeting InceptionV3 and
VGG. Under these conditions, BASES achieved untargeted ASR
of 99% and 100%, respectively. However, in the comparison
with BASES, we limited the number of surrogate models to 2 to
highlight the robustness of methods under constrained settings.
QuScore achieved higher IoU scores and comparable or better
success rates, emphasizing its efficiency and effectiveness even
with restricted resources such as the number of surrogate models
and query limits.

2) Attack Against Robustbench Models [37]: Table VI pro-
vides the performance of QuScore against ResNet50 and
WideResNet50, models sourced from the Robustbench table, us-
ing 1000 images. To calculate the IoU score, we used CAM inter-
preter in the experiment. Based on Robustbench, ResNet50 [38]
has a clean accuracy of 62.56% and robust accuracy of 29.22%
while WideResNet50 [39] achieves a higher clean accuracy
of 68.76% and robust accuracy of 40.60% on the ImageNet
dataset. Against these models, QuScore achieves ASR of 75%
and 93%, respectively, with low median query counts of 5. The
average query counts are 685.27 for ResNet50 and 565.55 for
WideResNet50, highlighting QuScore ’s efficiency even under
a query limit of 1000. The 1000 query limit was chosen as
these models are adversarially trained to defend against attacks,
making them harder to bypass and requiring careful evaluation
within a reasonable query budget. The high IoU values of
0.85 for ResNet50 and 0.88 for WideResNet50 indicate that
the adversarial examples closely resemble the original inputs,
maintaining perceptual similarity.

3) Experiments with Lower Perturbation ε: To further eval-
uate the robustness and effectiveness of our proposed attack
method under more strict conditions, we conducted addi-
tional experiments using ε = 4/255. The experiment utilized
ResNet50 as the source model and InceptionV3 as the target
model.

The results in Table VII indicate that with a lower ε value
of 4/255, our method achieved an ASR of 0.95. The average
number of queries required was 632.94, with a query limit set at
5000. The median query count was 5.00, and the IoU score was
0.82. These results demonstrate that our method remains highly
effective even under stricter conditions, maintaining a high
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success rate and producing high-quality adversarial examples
with a relatively low median query count.

B. Limitations

Although our evaluation in Section IV demonstrates the effec-
tiveness of QuScore in a range of classifiers and interpretation
models, it is important to recognize its limitations and potential
countermeasures. We discuss these factors in the following.

During the initial development of QuScore, the attack was
designed to target DNN models solely on the basis of the
success rate, disregarding the confidence level of the model’s
misclassification. While the attack achieved a high success rate
in fooling the target models (as shown in Table I), this is done
with low misclassification confidence, as shown in Table IV.
This is common in opaque settings, as the objective function
focuses on shifting the decision of adversarial samples to other
classes, which naturally results in low misclassification con-
fidence scores. The issue can be addressed by changing the
objective function to target higher misclassification confidence.
This means optimizing the attack to maximize the confidence of
the adversarial class, which can lead to higher misclassification
confidence scores.

Another limitation of QuScore is that the number of queries
required to perform the attack increases with the complexity
of the target DNN model. As a result, there are cases where
QuScore fails to fool more complex architectures. For example,
Inception-V3 requires more queries and has a lower success
rate than the other models. One possible solution to address
the limitation can be optimizing the transfer-based aspect of the
attack and adjusting key hyperparameters such as the pertur-
bation threshold and maximum query count. In addition, the
use of more complex source models may help mitigate the
limitation. Although our attack requires slightly more queries
than existing approaches [11], [12] (e.g., 98 and 130 queries
for VGG and Inception-V3, respectively), the difference is not
significant considering the constraints on the adversarial search
space of our attack.

C. Potential Countermeasures and Future Work

Based on the illustration in Fig. 3, adversarial samples gener-
ated by QuScore provide high-quality interpretations that are
indistinguishable from their benign interpretations. Another
countermeasure is to train a DNN model with an adversarial
dataset to increase its robustness (see Table II). It becomes more
difficult to fool a robust DNN model in a opaque setting when
adversarial training is used [40], [41]. In this case, an attacker
needs to increase the perturbation rate to fool the adversarially
trained DNN model, however, as the perturbation rate is high, it
could reveal the attacker’s presence. Adopting several defense
techniques [42] at the same time as an ensemble-based method
(i.e., preprocessing techniques) for the decision-making process
could be another countermeasure against the attack. The main
reason for this is that defense techniques utilize various features
of a sample to remove added perturbation. Also, optimally
generating an adversarial sample considering all the features
of a sample becomes computationally expensive.

Future Work: While our proposed attack demonstrated
its efficacy against various DNN models, future research can
explore other DNN/transformer-based models with different
architectures. Another potential direction is to aim for high ASR
with high misclassification scores. Furthermore, future work
could investigate other types of interpreters, such as RTS [23],
SHAP [43], and MASK [24].

VI. CONCLUSION

In this work, we propose the opaque version of the AdvEdge
attack, which can deceive both DNN models and their inter-
preters in a opaque setting. Our attack is based on transfer-based
and score-based methods and is both gradient-free and query-
efficient. Our experimental results demonstrate that our method
achieves a high ASR and generates adversarial interpretation
maps that are highly similar to benign interpretations. Moreover,
our attack is effective against various defense techniques, even
when they are involved in the process. We achieve a high ASR
and transferability while still misleading the target interpreters
in most cases, highlighting the efficacy and robustness of our
proposed attack. These findings emphasize the need to develop
more robust defense mechanisms to enhance the security of
DNN models against adversarial attacks.
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