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Abstract—Federated Learning (FL) offers a privacy-preserving
solution by enabling multiple clients to train a shared model
collaboratively without centralizing data. However, the decen-
tralized nature of FL presents challenges, particularly regarding
security and performance under adversarial conditions. This
paper investigates the effects of poisoning attacks under data
heterogeneity. Our experiments evaluate the impact of varying
malicious client fractions and poison concentration levels on
the accuracy of the model. We explore the effects of poisoning
attacks on FedAvg and FedNova models using medical imaging
tasks. Our findings reveal that increasing data heterogeneity
exacerbates the effects of poisoning, with FedNova demonstrating
greater resilience compared to FedAvg. We found that the number
of malicious clients plays a more significant role in degrading
performance than the ratio of poisoning samples shared by each
malicious client, suggesting that even modest levels of poisoning
can be tolerated by most algorithms. The study highlights the
importance of developing robust defense mechanisms to maintain
model performance under adversarial conditions.

Index Terms—Federated Learning, Robustness, Data hetero-
geneity, Adversarial Attacks, Machine Learning Security.

I. INTRODUCTION

Federated Learning (FL) has emerged as an innovative
paradigm that enables multiple clients to collaboratively train
a shared global machine learning model on the private data
of clients. This decentralized approach inherently enhances
privacy, making it particularly well suited for sensitive do-
mains like healthcare and finance, where data confidentiality is
crucial. Despite this advantage, FL presents several significant
challenges, particularly in terms of security and privacy, which
must be effectively addressed to fully exploit its potential.

One of the most pressing challenges in FL is the inherent
heterogeneity among participating clients. This heterogeneity
can emerge in various forms, including disparities in data
distributions, differences in model architectures, and variations
in their system capabilities. Such discrepancies can lead to
a degradation in the performance of the global model, as
the model may struggle to generalize across heterogeneous
data. The integration of privacy-enhancing methods, including
differential privacy, adds another layer of complexity to the
heterogeneity of the data. Although these methods are crucial
for protecting data, they introduce additional noise that am-
plifies heterogeneity challenges, making the learning process
even more complex.

Beyond performance issues, FL systems are particularly
susceptible to adversarial attacks. The decentralized nature of

FL provides malicious clients with opportunities to compro-
mise the integrity of the global model by injecting poisoned
data or manipulating model updates. These vulnerabilities pose
severe risks to the robustness and reliability of FL frameworks,
making it essential to detect these attacks and develop effective
defense mechanisms.

This paper presents an evaluation of FL resilience under data
heterogeneity and adversarial attacks, particularly poisoning
attacks [1]. We conducted experiments specifically on the
challenges posed by data heterogeneity, poison attacks, and
poison attacks in the context of heterogeneity. In addition,
we explore the trade-offs between model performance and
privacy preservation in federated learning, noting that while
FL inherently promotes privacy by keeping raw data on
client devices, aggregating model updates introduces potential
vulnerabilities. Although we do not directly experiment on
this topic, we refer to studies that have examined the impact
of privacy measures on overall performance and robustness.

In this study, we aim to evaluate the performance of several
FL approaches in heterogeneous learning environments, par-
ticularly in the presence of adversarial attackers. To this end,
we address the following key research questions.
1) How does heterogeneity in federated learning affect

model performance? We analyze the impact of varying
levels of data and system heterogeneity on the effective-
ness of different FL algorithms.

2) Is there a relationship between heterogeneity and the
resilience of the model against adversarial attacks?
We explore whether increased heterogeneity influences the
robustness of FL systems, particularly in the presence of
poison attacks.

Contributions. This paper offers the following contributions.
• The paper offers a detailed evaluation of four FL algo-

rithms under varying levels of data heterogeneity, high-
lighting their strengths and limitations.

• We examine the impact of poisoning attacks on FL,
providing experimental insights into how these attacks
affect system performance.

• We provide a practical recommendations to develop se-
cure and efficient FL frameworks.We also provide open-
source implementation, including code and data1.

1The complete implementation is available at
https://github.com/InfoLab-SKKU/SecurityAnalysisFL
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Paper Organization. The paper is organized as follows:
Section II categorizes the security challenges posed by hetero-
geneity in FL and reviews existing solutions to mitigate them.
Section III describes our experimental setup and presents the
results. In Section IV, we discuss the findings and propose
directions for future research. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS

FL [2] enables multiple clients– such as smartphones, or
Internet of Things (IoT) devices– to collaboratively train a
machine learning model without sharing their raw local data
with a central server. This decentralized approach enhances
data privacy and security.

Federated Server
θtg

θtd1

D1

Client 1
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Client 2

· · ·
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Client k
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t
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Fig. 1: Federated Learning Scenario: The central server sends
the global model parameters θtg to the clients. Each client
updates the model based on its local data Dd to get θt+1

d and
sends the updated model back to the server. The server then
aggregates these updates to form the next global model θt+1

g .

As shown in Figure 1, a typical FL scenario involves n
clients, each holding a local dataset Di for i = 1, 2, . . . , n.
The objective of FL is to minimize the total loss of overall
clients, formulated as:

min
θ

n∑
i=1

L(θ,Di)

Here, θ ∈ Rd represents the global model with d parameters,
and L(θ,Di) is the local loss function for the client i. FL
operates iteratively to train the global model θ.

During the t-th training round, the server distributes the
current global model θt−1 to all clients (or a selected subset).
For simplicity, we assume that all clients are selected, although
in practice only a subset may participate in each round. Each
client i initializes its local model θit as θt−1 and updates θit
by minimizing L(θ,Di) using Stochastic Gradient Descent
(SGD). After training, the client i computes the model update
git = θit − θt−1 and sends it to the server. The server then
aggregates the updates from all clients to update the global
model (θt = θt−1 + gt), where gt = AR({git}ni=1) is the
aggregated-model update, and AR denotes the aggregation rule
used by the server. A common aggregation rule is Federated

Averaging (FedAvg), where the aggregated model update is
the average of the clients’ model updates.

Performance of FL under Heterogeneity. Several studies
have explored the impact of client data heterogeneity on FL
performance. Chang et al. [3] and Ezzeldin et al. [4] examined
how non-iid data distributions across clients affect model
performance. They found that heterogeneity significantly de-
grades performance and proposed adjustments to aggregation
algorithms to mitigate these effects. Salazar et al. conducted
a comprehensive survey on group fairness in FL, highlight-
ing how heterogeneous data distributions across clients can
exacerbate biases, highlighting the need for fairness-aware
approaches [5]. Li et al. explored the impact of heterogeneous
data distributions on model bias, as clients with smaller
or less representative datasets may have their contributions
underrepresented in the aggregated model [6]. McMahan et
al. investigated convergence rates with heterogeneous clients
and found that some clients slow down training due to data
distribution disparities [7].

Security Challenges: Poisoning Attacks. The security of FL
systems has been a significant concern, particularly concerning
poisoning attacks where malicious clients aim to corrupt the
global model. A study [8] provided a comprehensive analysis
of various poisoning strategies and their impact on FL. Their
findings highlighted the vulnerability of FL to both data and
model poisoning attacks, emphasizing the need for robust
defenses. In another study [8], a defense framework was
proposed that uses anomaly detection to identify and exclude
malicious updates, significantly improving FL robustness.

Effects of Heterogeneity and Poisoning Attacks. Although
heterogeneity and poisoning attacks have been studied individ-
ually, their combined impact on the performance and security
of federated learning remains less explored. In a study [3],
the authors studied this combined impact, revealing that the
presence of heterogeneity and poisoning can significantly
affect FL systems. The study found that heterogeneity can
mask the presence of poisoning attacks, making it harder to
detect and mitigate them. This shows the importance of de-
veloping strategies that simultaneously address heterogeneity
and poisoning in FL systems.

To simulate heterogeneity in federated learning, researchers
often employ partitioning techniques such as Dirichlet parti-
tioning [9] and pathological partitioners. The Dirichlet parti-
tioning method generates non-IID (non-independent and iden-
tically distributed) data by sampling from a Dirichlet distribu-
tion, where the parameter α controls the level of heterogeneity.
A small α value results in more uneven data distributions
across clients, increasing heterogeneity, while larger α values
create more uniform distributions. Pathological partitioners
simulate heterogeneity by assigning each client a specific
number of unique labels. For example, in a dataset with
multiple classes, a pathological partitioner would limit each
client to only a few labels, ensuring that the data distribution
across clients is skewed and more heterogeneous.

Various methodologies have been used to evaluate FL
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systems under these challenging conditions. Yang et al. [10]
employed a simulation-based approach to model different
levels of heterogeneity and attack scenarios, providing insight
into the resilience of different FL algorithms. On the other
hand, Chang et al. [3] used real-world datasets to validate
their findings, highlighting the practical implications of their
theoretical models. We note that these studies were mainly
limited to the evaluation of FL systems under heterogeneity.

Data Heterogeneity Mitigation. In the context of FL, an
approach to achieving group fairness involves each client inde-
pendently applying local debiasing techniques to their locally
trained models. The central FL server then aggregates these
model parameters using standard FL aggregation algorithms,
such as Federated Averaging (FedAvg) [11], or its derivatives,
such as Federated Averaging with Momentum (FedAvgM)
[12], Federated Proximal Optimization (FedProx) [6], and
Federated Normalized Averaging (FedNova) [13]. These meth-
ods allow for training a global model without necessitating
the explicit sharing of local datasets. However, a significant
drawback is that isolated debiasing at each client can lead to
suboptimal performance, particularly in scenarios where data
distributions are highly heterogeneous among clients.

An alternative solution to fair training in FL involves
adapting debiasing techniques from the extensive literature on
centralized fair training [3], [14]–[16] for use in FL environ-
ments. One approach involves learning fair representations,
where clients train local embeddings that obfuscate sensitive
attributes while preserving utility, followed by global aggre-
gation [17]. Another method applies optimized pre-processing
to transform input data locally, ensuring that protected at-
tributes do not disproportionately influence predictions, with
transformed datasets used for training [18]. Additionally, certi-
fying and removing disparate impact leverages causal fairness
metrics to de-bias local datasets, enabling aggregation of bias-
free models at the server [19]. However, these methods face
challenges: fair representations may lose task-specific infor-
mation, pre-processing can reduce utility for highly diverse
datasets, and certifying disparate impact often requires shar-
ing subgroup performance metrics, raising privacy concerns.
Although these approaches can potentially result in more rea-
sonable and fair training outcomes, they often require clients
to exchange additional detailed information with the server
regarding the composition of their datasets. This can lead to
privacy concerns, as it may inadvertently reveal information
about various subgroups within a client’s dataset. For instance,
the server might need to know the model’s performance on
each subgroup or access local statistical information about
each group in the dataset.

Our experiments extend this evaluation by jointly exploring
both heterogeneity and poisoning attacks, an area that has
received limited attention in prior research. We provide a
more comprehensive analysis of FL robustness and security
considering both heterogeneity and poisoning attacks.

III. METHODOLOGY

Federated Learning Algorithms. In this study, we selected
FedAvg, FedAvgM, FedProx, and FedNova for their unique
purposes in federated learning. FedAvg serves as a simple and
efficient baseline. FedAvgM improves convergence under non-
IID conditions. FedProx addresses system heterogeneity, and
FedNova ensures fairness in heterogeneous systems. These
algorithms enable a comprehensive analysis of performance
under varying heterogeneity levels.
• FedAvg: In FedAvg [11], clients perform local updates, and

the server aggregates models using weighted averaging:

θt =

K∑
k=1

nk

n
θtk

FedAvg is simple and communication-efficient algorithm,
ideal for homogeneous data and is the baseline algorithm.

• FedAvgM: In FedAvgM [12], the algorithm add momentum
to the server updates to stabilize training:

θt = θt−1 + γmt + η

K∑
k=1

nk

n
(θtk − θt−1)

It improves convergence in non-IID data settings.
• FedProx: In FedProx [13], the algorithm introduces a

proximal term to limit the deviation of local updates:

min
θk

Fk(θk) +
µ

2
∥θk − θ∥2

FedProx handles system heterogeneity and stable training.
• FedNova: [13] algorithm modifies FedAvg by normalizing

each client’s contribution to the global model based on the
number of local updates performed, addressing the issue of
fairness when clients perform different amounts of work.
The global model update is expressed as:

θt =

K∑
k=1

τk∑K
k=1 τk

θtk

where τk is the number of local updates performed by client
k. FedNova ensures fairness among clients with different
computational capacities, especially in heterogeneous FL
systems where some clients might perform significantly
more updates than others.
The presented algorithms, i.e., FedAvg, FedAvgM, FedProx,

and FedNova, highlight different approaches to addressing the
issues of communication efficiency, model convergence, and
fairness in heterogeneous FL environments.
Datasets. We conducted our experiments using three different
image datasets, each representing medical imaging tasks:
• PathMNIST: The dataset is derived from pathology images

of colorectal cancer and consists of nine classes of tissues.
The images are colorized and resized to 28x28 pixels for
classification in medical image analysis [20].

• BloodMNIST: The dataset contains images of peripheral
blood smears, categorized into eight different blood cell
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Fig. 2: Data distribution of randomly sampled 10 clients on
BloodMNIST using a Dirichlet partitioner with varying alpha
values, demonstrating how different alpha settings affect the
distribution of samples across partitions.
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Fig. 3: Data distribution on BloodMNIST using a Patho-
logical partitioner with varying alpha values, demonstrating
how different number of classes by clients settings affect the
distribution of samples across partitions.

types. The images are grayscale and resized to 28x28 pixels.
It is used primarily for the classification of blood cell
morphology [20].

• TissueMNIST: The dataset is derived from images of
human tissues, classified into eight different tissue types.
The images are colorized and resized to 28x28 pixels. The
dataset aims to facilitate the classification of tissue images
in biomedical research [20].

Partitioning Strategies for Heterogeneity Analysis. We in-
vestigate the impact of data heterogeneity on the performance
of four federated learning algorithms: FedAvg, FedAvgM,
FedProx, and FedNova. To evaluate the robustness of these
algorithms under different levels of heterogeneity.

We employed two partitioning strategies to simulate varying
degrees of data heterogeneity as illustrated in Figure 2 and 3:

• Dirichlet Partitioning: A Dirichlet distribution with vary-
ing alpha values (0.9, 0.3, 0.1) was used to generate
different levels of non-IID data. Smaller alpha values lead
to more heterogeneous data distribution across clients.

• Pathological Partitioning: Additionally, we used a patho-
logical partitioner, where each client was assigned data
containing only 2, 4, or 7 distinct labels. This method
introduces controlled levels of heterogeneity by limiting
the variety of labels available to individual clients.

By assessing the performance of these algorithms across
varying levels of heterogeneity and using multiple datasets, we
aim to provide a thorough comparison of their effectiveness
in handling non-IID data distributions.
Threat Model. The objective of the attacker is to compromise
the integrity of the global model by decreasing its accuracy
and performance on clean test data, using the following capa-
bilities: 1) The attacker only has access to the local training
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Fig. 4: Mean accuracy comparison of Federated Learning
algorithms (FedAvg, FedAvgM, FedProx, and FedNova) on
BloodMNIST, PathMNIST, and TissueMNIST datasets under
Dirichlet partitioning with varying α values (A) and class
diversity with 2, 4, and 7 classes per client (B). The figure
illustrates the impact of increasing data heterogeneity on
model performance, with FedNova consistently outperforming
the other algorithms, particularly in highly non-IID settings
(lower α values). FedAvg and FedAvgM show significant
performance degradation as data becomes more skewed, while
FedProx performs better in intermediate heterogeneity but
struggles under extreme conditions.

dataset of a compromised client; 2) The attacker does not know
the server-side aggregation mechanism. We assume that the
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attacker can compromise one or more clients in the federated
learning setup. However, we do not consider scenarios where
the server itself is compromised. Additionally, we focus on
untargeted attacks under the described capabilities.
Experimental Setup. The experiments are designed to analyze
the impact of heterogeneity on FL performance, incorporating
datasets, FL algorithms, partitioning strategies, and attacks
used in our experiments. We employed MobileNetV2 [21] as
the global model architecture and conducted experiments with
50 clients, of which 10% participated in each training round.
The training spanned 100 rounds to evaluate the performance
of the models over time. We applied a poisoning attack to two
federated learning algorithms, FedAvg and FedNova, using
the Blood MNIST dataset. The attack involved setting the
poison concentration to 0.8 and incorporating malicious clients
30% into the system. Specifically, we simulate a label-flipping
attack, in which adversaries modify their label mappings to
degrade the performance of the global model without altering
their local training data. These experiments allow us to assess
the robustness of FedAvg and FedNova in a heterogeneous
data environment, simulating real-world scenarios where client
data distributions vary. Provides information on the resilience
of these models to poisoning attacks in challenging conditions.
Evaluation Metrics. The performance of the federated learn-
ing (FL) algorithms is assessed using Accuracy. This metric
quantifies the overall classification performance of the global
model in the test dataset. It provides a robust measure of the
model’s ability to correctly predict labels in unseen data, serv-
ing as a key indicator of its effectiveness and generalizability.

IV. EVALUATION AND DISCUSSION

The experiments presented in Figures 5, 4, and 6 provide
a comprehensive comparison of various Federated Learning
algorithms (FedAvg, FedAvgM, FedProx, and FedNova) in
terms of mean accuracy across the last 10 training rounds,
evaluated under two distinct partitioning schemes: Dirichlet
partitioning [9] and pathological partitioning [3]. The results
highlight several important insights about the performance of
these algorithms in the presence of non-IID data distributions
and poison attacks.
Performance under Heterogeneity. The results show the
varying capabilities of federated learning algorithms under
heterogeneous data distributions.

• FedNova consistently demonstrates superior performance
across various datasets and partitioning schemes. Its
normalization strategy effectively mitigates the negative
impact of heterogeneity in data by ensuring fairness
in client contributions, regardless of their computational
power.

• FedAvg and FedAvgM show competitive results in IID
or mildly heterogeneous environments, but experience
significant performance degradation in highly non-IID
settings, particularly under pathological partitioning or
when trained on highly skewed Dirichlet distributions
(low α values).
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Fig. 5: Accuracy comparisons of four federated learning
algorithms (FedAvg, FedAvgM, FedProx and FedNova) on
three image datasets (BloodMNIST, PathMNIST and TissueM-
NIST) using a Dirichlet partitioner with varying alpha values
(0.9, 0.3, 0.1). The results demonstrate how increasing data
heterogeneity (decreasing alpha) impacts the accuracy of each
algorithm.

• FedProx, designed to address system heterogeneity, im-
proves performance in Dirichlet partitioning scenarios but
performs similarly to FedAvg in pathological partitioning
settings.

Impact of Poison Attacks. The results further emphasize the
vulnerability of federated learning systems to poison attacks,
especially under increasing data heterogeneity. In the Dirichlet
partitioning scheme (Figure 5), where the degree of hetero-
geneity is controlled by the α parameter, we observe a sharp
decline in model performance as heterogeneity increases (i.e.,
as α decreases). The effect is particularly pronounced when
α = 0.1, where accuracy drops substantially, especially in the
presence of poisoned data. In these cases, FedNova continues
to outperform FedAvg, showcasing its robustness to both
heterogeneity and poisoning, with performance differences
becoming more apparent as α decreases.

In contrast, the Pathological partitioning scheme (Figure 8)
reveals a similarly detrimental impact of poisoning on model
performance. When data is partitioned by class, poisoned class
groups exhibit a notable decline in accuracy. The performance
comparison between FedAvg and FedNova across different
class groups further supports the observation that FedNova
is more resilient to poison attacks, particularly when the
partitioning strategy exacerbates data imbalance.

The results from our experiments clearly demonstrate that
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Fig. 6: Mean accuracy comparisons of four federated learn-
ing algorithms (FedAvg, FedAvgM, FedProx, and FedNova)
across three datasets (BloodMNIST, PathMNIST, and Tis-
sueMNIST) using a pathological partitioner. The experiments
were conducted with different levels of class diversity (2, 4,
and 7 classes per client). The results show that as the number
of classes per client increases (lower heterogeneity).

FedAvg, FedAvgM, and FedProx exhibit similar patterns of
performance degradation as the degree of data heterogeneity
increases. Specifically, as data distributions become more
non-IID, all three algorithms experience notable reductions
in accuracy. This degradation is further exacerbated by the
presence of malicious clients, where an increase in the number
of adversarial participants significantly compromises perfor-
mance. The same observation applies across both Dirichlet and
pathological partitioning schemes: as the number of malicious
clients rises, these algorithms struggle to maintain robust
performance under attack.

In contrast, FedNova consistently proves to be more re-
silient to both data heterogeneity and poison attacks. The key
to FedNova’s robustness lies in its advanced normalization
strategy, which adjusts the contribution of each client in
proportion to their computational capabilities and the size of
their data. This prevents clients with smaller or less diverse
datasets from disproportionately influencing the global model,
a common problem in heterogeneous FL environments. Fur-
thermore, by decoupling client contributions from the actual
update frequency, FedNova minimizes the impact of skewed or
poisoned data, making it more resistant to malicious attacks,
even when the number of adversarial clients is reasonable.
However, it is important to note that FedNova’s performance
also degrades as the dataset difficulty increases, as more
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(a) Mean accuracy under Dirichlet
partitioning for varying α values.
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Fig. 7: Comparison of Federated Learning algorithms (Fe-
dAvg and FedNova) in terms of mean accuracy under two
partitioning schemes: Dirichlet and pathological partitioning.
The figures show the impact of data heterogeneity and poison
attacks, with FedNova consistently outperforming the other
algorithms, especially under conditions of higher heterogeneity
and data imbalance.
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Fig. 8: Accuracy trends in the presence of malicious clients
and varying poison concentrations across different scenarios.
These figures highlight the impact on model accuracy based
on the proportion of malicious clients and the concentration
of poisoning,The experiments used a MobileNet model on the
Blood MNIST dataset, with with 50 clients over 100 global
communication rounds.

complex datasets strain the model’s ability to generalize,
despite its resilience to heterogeneity.

In scenarios where both data heterogeneity and malicious
clients are present, we observe an even sharper performance
degradation across all algorithms. Poison attacks not only
directly degrade model performance but also aggravate the
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effects of heterogeneity, creating compounding negative im-
pacts. Despite these challenges, FedNova remains the most re-
silient, though its performance does diminish compared to less
adversarial or more homogeneous conditions. This highlights
the strength of FedNova’s aggregation method in preserving
model accuracy, even in hostile and complex environments,
though its advantages diminish as the difficulty of both the
dataset and the attack increases.

Regarding malicious attacks, our results indicate that the
number of malicious clients plays a more significant role in
degrading performance than the concentration of the poisoning
itself. This suggests that even modest levels of poisoning can
be tolerated by most algorithms, but a larger proportion of
adversarial participants has a much more severe impact on the
global model, especially in the case of FedAvg, FedAvgM,
and FedProx.

In conclusion, these findings highlight the need for federated
learning solutions that can simultaneously trade off per-
formance, security, and fairness. Current approaches, while
showing promise, often focus on one aspect at the expense
of the others. Future solutions must consider fairness (to
address heterogeneity), security (to defend against malicious
attacks), and performance (to ensure scalability and accuracy)
as intertwined objectives. Only by optimizing across these
three axes can federated learning systems achieve robust,
equitable, and secure deployments in real-world settings.

V. LIMITATIONS AND FUTURE WORK

Limitations. While our study provides a foundational analysis
of adversarial attacks in federated learning, it has several
limitations. The current analysis does not explore more so-
phisticated poisoning methods that could exploit advanced
vulnerabilities in federated learning setups. Additionally, we
have not tested defense mechanisms to mitigate such attacks,
leaving their effectiveness against the described adversarial
scenarios unexplored. The evaluation is centered on specific
metrics and scenarios, which may not fully capture the broader
range of adversarial threats and their impacts in diverse
federated learning environments. Furthermore, the study does
not address the long-term effects of poisoning attacks on the
model’s convergence behavior, which could vary significantly
across training rounds. Finally, limited consideration is given
to multi-objective adversarial goals, such as balancing stealth
and efficacy, which could introduce more nuanced challenges
for defenses.
Future Work. To address these limitations, our future work
will focus on experimenting with more advanced poisoning
techniques, including adaptive and stealthy attacks, to better
understand their impacts on the performance of the global
model. Furthermore, we plan to investigate the effectiveness
of state-of-the-art defense mechanisms under the proposed
threat model, particularly in heterogeneous federated learning
setups. Another key direction will involve evaluating the
interplay between system heterogeneity and attack resilience to
identify new vulnerabilities and opportunities to design robust
federated learning systems. By extending the scope of our

analysis and incorporating these additional dimensions, we aim
to provide a more comprehensive understanding of adversarial
threats and defenses in federated learning. This will help
bridge the current gap in the literature and contribute to the
development of more resilient federated learning frameworks.

VI. CONCLUSION

This study highlights the significant challenges that Fed-
erated Learning (FL) systems face under conditions of data
heterogeneity and adversarial attacks, specifically poisoning
attacks. Through a comprehensive evaluation of key FL al-
gorithms—FedAvg, FedAvgM, FedProx, and FedNova—we
found that data heterogeneity considerably exacerbates the
vulnerabilities of these systems, leading to a notable decline
in model performance. Among the algorithms tested, Fed-
Nova demonstrated the highest resilience, effectively miti-
gating the negative impact of both data heterogeneity and
poisoning attacks due to its advanced normalization strategy.
Our findings emphasize the critical need for integrated so-
lutions that address performance and security simultaneously
in FL environments. Although current defense mechanisms
can partially protect against adversarial threats, they often
struggle in highly heterogeneous settings where data and
computational discrepancies are prevalent. Future work should
focus on developing robust and adaptive FL frameworks that
can dynamically adjust to varying levels of heterogeneity
and adversarial intensity, ensuring reliable and secure model
training in real-world applications.
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