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ABSTRACT
Deep learning has been rapidly employed in many applications
revolutionizing many industries, but it is known to be vulnerable
to adversarial attacks. Such attacks pose a serious threat to deep
learning-based systems compromising their integrity, reliability,
and trust. Interpretable Deep Learning Systems (IDLSes) are de-
signed to make the system more transparent and explainable, but
they are also shown to be susceptible to attacks. In this work, we
propose a novel microbial genetic algorithm-based black-box at-
tack against IDLSes that requires no prior knowledge of the target
model and its interpretation model. The proposed attack is a query-
efficient approach that combines transfer-based and score-based
methods, making it a powerful tool to unveil IDLS vulnerabilities.
Our experiments of the attack show high attack success rates using
adversarial examples with attribution maps that are highly similar
to those of benign samples which makes it difficult to detect even
by human analysts. Our results highlight the need for improved
IDLS security to ensure their practical reliability.
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1 INTRODUCTION
The rapid development and deployment of deep learning models
have led adversaries to exploit vulnerabilities in the application
pipeline to compromise results or lead models to misbehave [18,
19, 22]. Studies have shown that deep neural network models are
susceptible to adversarial examples, which are carefully designed
samples used for adversarial purposes such as poisoning, evasion,
model extraction, and inference [2, 4].

Interpretable Deep Learning Systems (IDLSes) are deep learning
models with interpretable knowledge representations. They have
been shown to be more robust against adversarial attacks, as in-
terpretation can reveal adversarial manipulations, i.e., the added
perturbations to the example input. However, recent studies have
shown that IDLSes in white-box settings are still susceptible to
adversarial manipulations [1, 3, 5, 22]. To be specific, adversarial
samples can mislead the target deep learning model and deceive its
coupled interpreter simultaneously.

Although attacks in white-box scenarios are based on complete
knowledge of the target model and can achieve a high attack suc-
cess rate with high confidence, they are impractical in most circum-
stances. In contrast, black-box attacks assume that the adversary
can only query the model and access the output without extended
knowledge of the system’s components or the model’s parameters,
and are therefore more realistic. Transfer-based and score-based
attacks are common examples of this type of attack [2, 7, 12, 14].

Attacking IDLSes in black-box settings is still an unexplored field
with many challenges. This work proposes a black-box attack that
generates adversarial examples to mislead the target models and
their coupled interpreters. The proposed approach is gradient-free
and query-efficient based on transfer-based and score-based attacks.
We evaluated our approach against two deep learning models and
one interpreter on the ImageNet dataset and show the possibility
and practicality of generating malicious examples with arbitrary
predictions and carefully manipulated interpretations in order to
achieve a high attack success rate in a black-box environment.
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Contributions. Our contributions can be summarized as follows:
• We propose the black-box version of AdvEdge attack [1] to
generate adversarial samples against IDLSes.

• We empirically evaluate the effectiveness of the attack from
the perspective of two deep learning models and one interpre-
tation model. Based on experimental results, we show that the
proposed approach achieves a high attack success rate with a
smaller number of queries to attack several target deep learn-
ing models and their interpreters on the ImageNet dataset.

Organization. The remainder of the paper is organized as fol-
lows: Section 2 describes the notations and terms used in the paper
and presents the proposed attack and its underlying mechanisms;
Section 3 provides the results of empirical evaluations of attack ef-
fectiveness and robustness against deep learning and interpretation
models; Section 4 surveys recent research studies in the domain;
Section 5 concludes the paper.

2 METHODS
The section describes the proposed attack in black-box settings
with a detailed explanation of the methods adopted.

2.1 Concepts and Notations
The notation, terms, and symbols used in the paper are introduced
in this subsection.

Classifier. This work focuses on image classification using two
types of deep neural network models: white-box and black-box. In
a black-box setting, we denote the target model as 𝑓 (𝑥) = 𝑦 ∈ 𝑌 ,
where 𝑦 is a single category from a set of categories 𝑌 . In a white-
box setting, we denote the source model as 𝑓 ′ (𝑥) = 𝑦 ∈ 𝑌 .

Interpreter.We use an existing interpretation model 𝑔 to generate
an interpretation map𝑚 that displays the feature importance for a
sample 𝑥 classified by 𝑓 : 𝑔(𝑥 ; 𝑓 ) =𝑚. Our approach uses post-hoc
interpretability [8, 11, 15, 17], which requires another model to
interpret the decision process of the current classification model.

Adversarial Attack. PGD attack generates an adversarial sample
𝑥 to make the source model 𝑓 ′ misclassify 𝑥 into another category:
𝑓 ′ (𝑥) ≠ 𝑦. It works by perturbing the input pixels and is imple-
mented using a projection operator

∏
, a learning rate 𝛼 , a loss

function ℓ𝑎𝑑𝑣 , and a norm ball B𝜀 (𝑥) with a range 𝜀. The update
rule is as follows.

𝑥 (𝑖+1) =
∏

B𝜀 (𝑥)
(
𝑥 (𝑖 ) − 𝛼. 𝑠𝑖𝑔𝑛(∇𝑥 ℓ𝑎𝑑𝑣 (𝑓 ′ (𝑥 (𝑖 ) )))

)
Threat Model. We consider a black-box setting in which the ad-
versary has limited access to the target deep learning classifier (𝑓 )
but no access to the interpretation model (𝑔), which is a realistic
scenario for the attack.

2.2 Attack Formulation
To effectively attack IDLSes, it is necessary to deceive both the deep
learning model and its interpretation model. AdvEdge [1] presents
a technique for generating an adversarial sample 𝑥 that satisfies
four critical conditions. These conditions include: 1 successfully

tricking the deep learning classifier 𝑓 ′, 2 producing an interpre-
tation map 𝑚̂ similar to the benign sample 𝑥 , 3 being visually
imperceptible, and 4 limiting noise to the edge of the sample. The
attack framework can be summarized as follows.

min
𝑥

: Δ(𝑥, 𝑥) 𝑠 .𝑡 .


𝑓 ′ (𝑥) ≠ 𝑦, 𝑠 .𝑡 . ∥𝑥 − 𝑥 ∥∞ ∈ {−𝜖, 𝜖}
𝑔(𝑥 ; 𝑓 ′) = 𝑚̂, 𝑠 .𝑡 . 𝑚̂ � 𝑚

Δ(𝑥, 𝑥) ∼ 𝑒𝑑𝑔𝑒 (𝑥 ∩𝑚)
By using this formulation, the adversarial sample generated

ensures that the predicted category is different from the original one,
the interpretation map remains similar to the benign sample, and
the added perturbation is limited to the sample’s edges that intersect
with the interpretation map. To achieve this, the attack framework
minimizes the overall adversarial loss (ℓ𝑎𝑑𝑣 ) that includes both the
classification loss ℓ𝑝𝑟𝑑 (𝑓 ′ (𝑥)) = −𝑙𝑜𝑔(𝑓 ′ (𝑥)) and the interpretation
loss ℓ𝑖𝑛𝑡 (𝑔(𝑥 ; 𝑓 ′,𝑚) = |𝑔(𝑥 ; 𝑓 ′) −𝑚 |22.

The overall adversarial loss is formulated as follows:

ℓ𝑎𝑑𝑣 = min
𝑥

ℓ𝑝𝑟𝑑 (𝑓 ′ (𝑥)) + 𝜆 ℓ𝑖𝑛𝑡 (𝑔(𝑥 ; 𝑓 ′),𝑚)

where the hyper-parameter 𝜆 balances ℓ𝑝𝑟𝑑 and ℓ𝑖𝑛𝑡 .
The final adversarial framework can be described as follows:

𝑥 (𝑖+1) =
∏
B𝜀 (𝑥 )

(
𝑥 (𝑖 ) − 𝑁𝑤 𝛼. 𝑠𝑖𝑔𝑛(∇𝑥 ℓ𝑎𝑑𝑣 (𝑥 (𝑖 ) ))

)
In the above equation,

∏
represents the production operator, B𝜀

is a norm ball, 𝛼 is the learning rate, 𝑥 denotes the input sample, and
𝑥 (𝑖 ) denotes the adversarial sample generated at the i-th iteration.
Furthermore, the edge operator function 𝑁𝑤 is used to optimize
the location and magnitude of the added perturbation:

𝑑 =

√︃
𝑑2
ℎ
+ 𝑑2𝑣

𝑁𝑤 = 𝑑 ∩𝑚

where 𝑑 is an image that contains edges of the sample 𝑥 extracted
through the formula 𝑑 =

√︃
𝑑2
ℎ
+ 𝑑2𝑣 , where 𝑑ℎ and 𝑑𝑣 represent the

horizontal and vertical edge information of the sample. The attack
process utilizes the intersection of the edges of a sample image and
its interpretation map to identify critical regions.

The PGD framework [16] is employed to generate initial ad-
versarial samples for the genetic algorithm in a white-box setting,
using a transfer-based approach to attack the source deep learning
models and their interpreters. Additionally, the Microbial Genetic
Algorithm (MGA) [4, 12] is utilized to optimize adversarial samples
against the black-box deep learning classifier 𝑓 ′.

2.3 MGA
MGA [12] is a genetic algorithm that leverages a gradient-free opti-
mization technique to generate candidate solutions. The algorithm
operates by iteratively evolving a set of samples, referred to as
a population, to produce optimal candidates with higher fitness
scores. Each iteration, or generation, involves the evaluation of the
quality of each member of the population through a fitness function
that assigns a value based on a defined objective function of the
optimization process.



The fitness function plays a crucial role in determining the like-
lihood of a particular sample being selected for the next generation
through a process that involves crossover and mutation. Samples
that demonstrate high fitness scores are more likely to be selected
for this process, and the iterative evolution of the population contin-
ues until an optimal candidate that satisfies the problem’s objective
function is found.

MGA is a useful optimization technique in scenarios where the
objective function is unknown or difficult to compute, as it enables
the exploration of the search space without relying on gradients.
The approach is particularly effective in solving complex optimiza-
tion problems with a large number of variables. More details can
be found in Section 2.4.

2.4 Black-box Implementation
Our approach is based on transfer-based learning techniques [10,
20]. We generate adversarial samples against a deep learning model
in a white-box setting and use them as the initial population for
MGA. MGA updates the initial population to produce new genera-
tions of adversarial examples to deceive a black-box deep learning
model 𝑓 ′ and mislead its coupled interpreter 𝑔.

The attack consists of genetic algorithm operators: initialization,
selection, crossover, mutation, and population update. Seeding the
initial population with an optimal solution helps the technique
converge fast. We evaluate each individual in the population by
applying a loss function as the fitness function. Unlike the tra-
ditional genetic algorithms, the selection process of our method
randomly picks two samples, one with a higher fitness score and
the other with a lower fitness score, to keep the perturbation in
the newly generated sample area that is considered important by
the target model and its interpreter. We generate new offspring by
transferring the genetic data of the winner and the loser with the
predefined crossover rate. Mutation diversifies the population and
introduces enough diversity to reach points outside the regions of
the local optima.

Overall, the AdvEdge algorithm is effective in generating ad-
versarial samples against a source deep learning model and its
interpreter. The generated samples are then used as seeds for the
initial population. The fitness scores of the population are evaluated
by sending them to the target model in a black-box setting. If the
attack requirements are met, the algorithm stops further steps. Oth-
erwise, the algorithm repeats the steps until it succeeds or reaches
the query threshold.

3 EXPERIMENTS AND EVALUATION
In this section, we provide detailed information on the settings and
metrics used for our experiment to measure the performance of the
proposed attack in terms of the deep learning and interpretation
models given in the paper.

3.1 Experimental Settings

Datasets.We conducted our experiment on the ImageNet dataset
[9], consisting of 1.2 million images for 1,000 categories. To evaluate
our attack, we randomly select one image from each category in
the ImageNet validation set [9], resulting in a total of 1,000 images.
We ensure that the selected images are correctly classified by the

target model 𝑓 with a classification confidence score greater than
60%. For this experiment, we set the value of 𝜖 at 8, which is similar
to the settings used in the AdvEdge attack [1], and represents the
perturbation scale in the range of [0, 225]. Through these experi-
ments, we validate that our proposed attack is effective across all
categories of the selected deep learning models.

Classifiers. The experiment conducted in this study involves the
use of two popular models, namely DenseNet-169 and ResNet-50,
whichwere pre-trained on the ImageNet dataset. Thesemodels were
used as both the source and target models for the transfer-based
attack, which involved generating adversarial samples that could be
transferred from the source model to the target model. The attack
was limited to a maximum of 50,000 queries and the step size 𝛼 and
the number of iterations were set at 1/255 and 300, respectively.
These values were selected based on the settings used in a previous
attack called AdvEdge [1]. By using these pre-trained models and
established attack settings, we aim to evaluate the effectiveness of
our proposed attack in a controlled and reproducible manner.

Interpreters. CAM [23] interpreter is adopted as the representa-
tive of the interpretation models. CAM utilizes the feature maps
of the convolutional layers in a deep learning model to gener-
ate interpretation maps: 𝑚𝑐 =

∑
𝑖 𝑤𝑖,𝑐𝑎𝑖 ( 𝑗, 𝑘), where 𝑎𝑖 ( 𝑗, 𝑘) is

the activation of the ith channel at the spatial location ( 𝑗, 𝑘) and
𝑤𝑖,𝑐 is the weight of the i-th input and the c-th output in the lin-
ear layer of a deep learning model. We set 𝜆 in Equation (ℓ𝑎𝑑𝑣 =

min𝑥 ℓ𝑝𝑟𝑑 (𝑓 ′ (𝑥)) + 𝜆 ℓ𝑖𝑛𝑡 (𝑔(𝑥 ; 𝑓 ′),𝑚)) at 0.204 for the CAM that is
found effective in AdvEdge [1]. We use its open-source implemen-
tations for the experiment.

3.2 Attack Evaluation
We evaluate the proposed attack using various metrics to answer
the following questions: 1 Is it effective against black-box deep
learning models? 2 Can it deceive interpretation models by generat-
ing interpretation maps similar to benign samples? 3 Is it effective
against defensive black-box deep learning models? 4 Can it deceive
interpretation models with defensive black-box deep learning models?

Evaluation Metrics. Different evaluation metrics are used to as-
sess the effectiveness of the proposed attack against both deep
learning classifiers and interpreters.

For deep learning classifiers, the following metrics are used:

• Attack success rate: It calculates the ratio of successful attack
cases to total attack cases.

• Average queries: The metric evaluates the efficiency of the
attack algorithm in generating successful adversarial examples
in a black-box setting.

• Noise rate: The metric is used to evaluate the quality of the
adversarial examples generated by the attack algorithm.

For interpreters, the following metrics are used:

• Qualitative comparison: The metric evaluates the similarity
between the interpretations of adversarial images and their
benign counterparts.

• IoU Test: The metric measures the similarity of interpretation
maps using the Intersection-over-Union score for different
threshold values.
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Figure 1: Attribution maps of benign and adversarial samples generated by our attack using CAM on ResNet and DenseNet.

Table 1: Success rate, average queries, and average noise of the
proposed attack against different classifiers and interpreters
using 1,000 images. The attack is based on black-box settings.

Interpreter
Source
Model

Target
Model

Success
Rate

Average
Queries

Average
Noise Rate

CAM ResNet DenseNet 0.99 209.76 0.20 ± 0.06
DenseNet ResNet 1.00 188.53 0.20 ± 0.06

3.3 The Attack against Deep Learning Models
In this section, we present the evaluation of the effectiveness of our
proposed adversarial attack on two popular model architectures,
namely ResNet and DenseNet. To assess the efficacy of our attack,
we implemented and tested it on two interpretablemachine learning
models using the Class Activation Mapping (CAM) technique with
ResNet and DenseNet as source models.

The results of our experiments on the aforementioned scenarios
are reported in Table 1. Our attack on DenseNet models achieved
an impressive attack success rate of 0.99 and was found to be highly
query efficient, requiring an average of only 209.76 queries. The
average noise rate in the target model was stable at 0.20 ± 0.06. For
the CAM interpreter with ResNet, our attack achieved a complete
attack success rate on the target model with an average of 188.53
queries. The average noise rate remained stable. These results show
improved performance with more complex source models.

Our results indicate that the proposed attack is highly effec-
tive against popular deep learning architectures and interpretable

IoU Score

1.00.6 0.8

ResNet

DenseNet

ResNet DenseNet

Figure 2: IoU scores of interpretation maps generated by
our attack using CAM interpreter and ResNet, DenseNet as
source models. y-axis represents the target models

machine learning models, highlighting potential security vulnera-
bilities and the need for robust defenses against adversarial attacks.

Observation 1: The Attack against Deep Learning

Our proposed attack has demonstrated a high degree of
effectiveness in deceiving deep learning models, achieving
a consistently high attack success rate across different
source models. This highlights the significant potential for
our attack to pose a threat to the security and reliability of
deep learning models.



3.4 The Attack against Interpreters
In this section, we investigate the effectiveness of our proposed
attack on the similarity between benign and adversarial interpre-
tations, using a qualitative comparison and the Intersection over
Union (IoU) test.

Qualitative comparison. Our qualitative comparison of the attri-
bution maps generated by the Class Activation Mapping (CAM)
interpreter for benign and adversarial samples showed that it was
difficult to differentiate between the two. Our findings indicate that
the adversarial attribution maps generated by our attack are highly
reliable and comparable in quality to those produced from benign
inputs. Figure 1 shows several examples of comparison between
benign and adversarial samples generated by the attack.

IoU Test. To further assess the similarity between the two types of
attribution maps, we used the IoU test, which measures the overlap
between two maps. Our attack achieved highly balanced IoU scores
on different deep learning models with the CAM interpreter, indi-
cating that the adversarial attribution maps generated by our attack
are similar to the benign attribution maps. Figure 2 summarizes
our attack performance, which can be considered significant for a
black-box attack.

Our findings highlight the effectiveness of our proposed attack
in generating adversarial interpretation maps that are similar to
their benign counterparts, raising concerns about the security and
reliability of interpretable machine learning models.

Observation 2: The Attack against Interpreters

Our proposed attack has been shown to generate adver-
sarial interpretation maps that are visually similar to their
corresponding benign counterparts. This characteristic
makes it challenging to distinguish between adversarial
and benign maps, highlighting the potential for our at-
tack to undermine the reliability and trustworthiness of
interpretable machine learning models.

4 RELATEDWORK
This section comprehensively reviews prior research on attacks
targeting deep neural network models. The survey encompasses
studies conducted on white-box and black-box attacks, utilizing
diverse techniques such as transfer-based attacks, interpretation-
based attacks, and gradient-based attacks.

Transfer-based attacks. In the realm of attacks against deep learn-
ing models, transfer-based attacks have received considerable atten-
tion in previous research. These attacks utilize adversarial samples
generated by white-box attacks against one model to attack other
black-box models. The potential effectiveness of transfer-based
attacks has been demonstrated in various studies [6, 10, 13, 20].
For instance, researchers have proposed methods to enhance the
transferability of adversarial samples by adding perturbations to
the hidden layers of a model or convolving the gradient via a spe-
cific kernel. These studies highlight the importance of considering
transfer-based attacks when assessing the robustness of models

and offer insight into techniques to improve the transferability of
adversarial samples.

Interpretation-based attacks. This part discusses interpretation-
based adversarial attacks that can deceive both the target deep
learning models and their interpreters [22]. A recent study pro-
posed white-box attacks called AdvEdge and AdvEdge+ against
deep learning models and their interpreters, highlighting the vul-
nerability of models that rely on interpretable features for decision
making [1]. These attacks show the importance of considering the
interpretability of deep learning models in addition to their accu-
racy and robustness. Furthermore, the proposed attacks provide
a valuable tool for evaluating the interpretability of models and
assessing their susceptibility to adversarial attacks.

Gradient-free attacks. Heuristic methods, including evolution
strategies and genetic algorithms, have been utilized to create ad-
versarial attacks that can generate visually imperceptible samples
to deceive deep learning models [7]. GenAttack is a gradient-free
optimization attack that can generate adversarial samples against
black-box models with fewer queries. Another study proposed a
query-efficient attack called MGAAttack [21], which uses transfer-
based techniques to improve its efficacy. These attacks show the
susceptibility of deep learning models to adversarial attacks and
highlight the need to develop more robust defense mechanisms to
enhance their security. By analyzing these attacks, researchers can
identify weaknesses in models and devise better defenses against
adversarial attacks.

5 CONCLUSION
In this study, we propose a black-box version of the AdvEdge at-
tack that can effectively deceive deep learning models and their
interpreters. Our attack combines transfer-based and score-based
methods to generate adversarial examples that are difficult for the
target models to classify correctly while also producing adversarial
interpretation maps that are highly similar to the corresponding
benign interpretations. Furthermore, our attack is both gradient-
free and query-efficient, making it suitable for practical scenarios
where access to model parameters or gradients may be limited.
We evaluated the effectiveness of our proposed attack on various
deep learning models, including ResNet and DenseNet, and their
interpreters, such as the Class Activation Mapping (CAM) inter-
preter. Our experimental results show that our attack achieves a
high success rate in deceiving target models and interpreters. More-
over, we performed a qualitative comparison and an Intersection
over Union (IoU) test to evaluate the similarity between adversarial
and benign interpretation maps. Our comparison of the attribution
maps generated by the CAM interpreter for both benign and adver-
sarial samples showed that it was difficult to distinguish between
them. These results suggest that our attack can generate adversarial
interpretation maps with a level of reliability that is comparable to
that of benign inputs. In general, our proposed attack highlights
the importance of developing more robust deep learning models
and interpretability techniques to enhance their security against
adversarial attacks. Furthermore, our work underscores the need to
develop effective defense mechanisms that can detect and prevent
such attacks in real-world scenarios.
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