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Abstract: The proper interpretation of the malware API call sequence plays a crucial role in identifying
its malicious intent. Moreover, there is a necessity to characterize smart malware mimicry activities
that resemble goodware programs. Those types of malware imply further challenges in recognizing
their malicious activities. In this paper, we propose a standard and straightforward contextual
behavioral models that characterize Windows malware and goodware. We relied on the word
embedding to realize the contextual association that may occur between API functions in malware
sequences. Our empirical results proved that there is a considerable distinction between malware and
goodware call sequences. Based on that distinction, we propose a new method to detect malware that
relies on the Markov chain. We also propose a heuristic method that identifies malware’s mimicry
activities by tracking the likelihood behavior of a given API call sequence. Experimental results
showed that our proposed model outperforms other peer models that rely on API call sequences.
Our model returns an average malware detection accuracy of 0.990, with a false positive rate of 0.010.
Regarding malware mimicry, our model shows an average noteworthy accuracy of 0.993 in detecting
false positives.

Keywords: malware detection; API call sequence; contextual behavior; malware mimicry

1. Introduction

With the rapid development in computers and Internet technology, malicious programs (malware)
also have significantly developed in both categories and quantities. Researchers have centered their
attention on inventing diversity malware detection methods to relieve the expeditiously growing
malware rate. Generally, malware detection methods are categorized into either static or dynamic [1].
In static malware detection, researchers usually check and analyze portable executable (PE) files’
contents without executing the malware samples.

Throughout the static analysis, analyzers investigated PE files by collecting and extracting specific
features such as string patterns, operation code (op-code) sequences, and byte sequences. The features
collected during static analysis are generally viewed as discriminating features that are used to decide
whether a given sample is malicious or not [2]. Nevertheless, static malware detection methods have
shown to be inappropriate to overcome the skillful techniques used by malware authors to bypass
detection [3–5].
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In contrast to static analysis, dynamic analysis tools are used to monitor the malware during
execution. Through observing malware in real-time, we can extract valuable behavior features such as
network behavior, system calls, registry change, and memory usage [6].

The Application Programming Interface (API) call sequences are viewed to be a distinguishable
representative features in behavioral-based malware analysis [7]. The reason behind its prominence
is because API call analysis can uncover and capture the malware behavior. Those types of real
behaviors are not attainable in static analysis. Therefore, dynamic analysis research works relied on
real-time features such as API call sequence as well as control flow that reveal malicious malware
behavior [8]. However, dynamic analysis approaches are also insufficient. It was reported in [9] that
brilliant malware can discover whether it runs on a virtual or real environment.

One of the most smart malware approaches to avoid exposure is through behaving as normal or
benign executable files. This kind of mimicry behavior became a real challenge to malware detection
tools. It is natural to think that the most common malware attacks (especially for Windows operating
systems) are formed using executable files, however, security reports [10] showed that the wildest
serious attacks are the ones that are carried out using mimicry infections. Those types of infections
allow attackers to exploit the vulnerabilities of third-party applications to trigger executable payloads.
Another quandary is regarded due to the vulnerabilities of third-party applications that are not
promptly patched. Therefore, the late or absence of proper security updates increases much longer the
lifespan of attacks committed by mimicry infections.

Machine learning-based techniques have been used to detect malicious parts that are embedded
in infected user applications such as PDF files. Research work demonstrated the effectiveness of
learning-based systems at detecting obfuscated attacks that are capable of circumventing plain
heuristics [11–13]; however, the problem still requires significant work to resolve.

Malware analysis tools should also pay attention to non-executable files that seem to behave
benignly. Nevertheless, they conceal malicious code which makes their detection significantly harder.
Although their imperfection, dynamic analysis is prospectively able to conquest some benchmark
metrics. Those metrics are determined during malware interactions with the subsidiary operating
system. Those metrics can be used to detect a possible attack [14].

In this work, we exploited the contextual embedding features in the API call sequence. Through
modeling the transitions existing in the calling sequence, we generated behavioral models for malware
and goodware. Although malicious and non-malicious applications are using the same API functions,
we proved that there are variations in how both types utilized the API functions. We also propose a
solution to detect Windows malware and malware mimicry or fake goodware programs.

We organized the rest of the paper as follows: Section 2 discusses the related work and other
research backgrounds. In Section 3, we present our proposed malware detection model. The datasets,
along with the empirical evaluations of our model, are presented in Section 4. Section 5 concludes
this paper.

2. Related Work

Many studies aimed to analyze malware characteristics. The most leading way to analyze malware
is through monitoring its behavior. One of the leading approaches to perceive the program behavior
is through tracking its API calls [15,16]. API functions are standard by themselves; there are no
groups called malicious or non-malicious functions. Malicious applications also utilize the regular
API functions to perform its harmful activities. The calling mechanism to API functions does not
characterize the difference between malicious and normal programs. Although, the flow order of API
calls may lead to the contextual behavioral characteristic of the calling process [17]. However, due to
the vast amount of API functions, it becomes laborious to describe running processes’ behavioral
attributes by monitoring and tracing all APIs simultaneously.

The API calling sequence that takes place among the processes and the operating system is
considered influential. Hence, it is viewed as a fundamental distinction between the behavior of
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malicious and normal processes [3]. Therefore, most research work in malware analysis tried to
understand the process behavior through analyzing API calls [18]. The order of functions in the
calling sequences could lead to meaningful expressions that provide reliable malware recognition.
The API calls encode sufficient information regarding the possible malware functionalities that happen
throughout malware execution.

Popular machine learning algorithms such as Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Decision Tree (DT), and Naive Bayes (NB) are widely used in malware detection [19–22].
Conventional machine learning algorithms are potentially able to learn behavioral features from
malware samples. However, the performance of any machine learning algorithm is determined by the
accuracy of the extracted features. In addition, it is also troublesome to extract significant behavioral
features to improve detection performance. Therefore, common machine learning algorithms seem
discouraging for malware detection [23,24].

Lu et al. [25] and Wu et al. [26] converted API calls into regular expression (RE) rules to identify
and extract malicious sequence patterns. They recognized any malicious sequence as malware when
any match exists between the observed API call sequence and predefined RE rules. Taejin et al. [27]
transformed API calls into some code arrangements and grouped the APIs using n-gram. Tran et al. [28]
used natural language processing to analyze the API call sequence. They divided the long sequence
calls into small chunks using approaches like n-gram. The resultant n-grams were assigned values by
using the term frequency-inverse document frequency (TF-IDF).

The main objective of using TF-IDF is to transform the textual n-grams into numerical features to
enable the application of machine learning algorithms. However, statistical approaches like TF-IDF do
not conserve any contextual association that exists among words [29,30]. Consequently, in our work,
we employed the word embedding on the API calling sequences to infer the contextual association
among the API calls.

Despite the accuracy of machine learning-based models for malware detection, researchers
getting more suspicions about the reliability of learning algorithms against malware mimicry
attacks [31–34]. These types of attacks became quite popular, as shown in [31], which are subsequently
discussed in [35–38]. They showed that mimicry attacks lead to deceiving malware detection models,
which resulted in misleading classification.

Throughout this paper, we proposed a malware detection mechanism relying on the contextual
perception among APIs within the calling sequence. We also addressed the mimicry behaviors that
malware can have. The proposed work provided a reliable technique that detects with high accuracy,
both malware and mimicry malware (fake goodware) calling sequences.

3. Proposed Model

As mentioned above, former research studies were mainly concerned with finding and extracting
behavioral features’ patterns in the API calling sequences. Behavioral patterns are used as features
for identifying and detecting malware. However, previous studies did not attempt to investigate the
association that may exist among the different API functions in the entire calling sequence.

In our proposed model, we aimed to discover any relation(s) that occur in benign or malicious calls.
As shown in Figure 1, our model consists of three phases, namely, initialization, learning, and testing
phase. We will briefly discuss each phase in the following sections.
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Figure 1. Proposed malware detection model.

3.1. Initialization Phase

The main purpose of the initialization phase is to restyle the API call sequence form to the cluster
sequence one. A major obstacle we faced during malware analysis is the considerable amount of
different API functions that make the analysis process extremely hard. However, the analysis process
becomes possible if there is a way to customize that massive number of APIs.

Nevertheless, we think that the API functions’ arrangements in the malware calling sequences do
not exist at random. It conceals some remarkable contextual patterns which carry out their malignant
activities. The contextual malicious patterns are relatively similar in some way among various malware
sequences. Through extracting the contextual patterns from enormous malware API call sequences,
we enhance our capability of characterizing the contextual relations which exist within malicious API
call sequences.

Therefore, in our model, we relied on word embedding [39] to find the contextually related API
functions. Analogous to word embedding, according to the API call sequences, the distribution of
API function vectors in the space depends solely on the contextual similarity among APIs in the input
corpus. Therefore, when two API functions are contextually similar, they will be positioned close to
each other in the neighborhood space. Similarly, when two API functions are contextually dissimilar,
they will be placed remotely from each other. During our experimentation, we set the embedding
dimension feature vectors size to 300, window size to 8, and workers to 6. As shown in Figure 1,
word embedding produces two outputs for each training sequences namely, APIs and embedding model.
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In our model, we used the embedding model that resulted in each training category to calculate
the similarity between its API function. The similarity computation produces two outputs, namely,
goodware and malware API similarity matrix. The similarity matrix describes the similarity among
individual API functions in its categorical sequence.

Through clustering the goodware/malware similarity matrix, we grouped different API functions
that are contextually similar traits into a finite number of clusters. In our model, we used the k-means
algorithm [40] to cluster the similarity matrix. We relied on the elbow method [41] to acquire the ideal
number of k clusters to provide it to the k-means algorithm. In our experiments we obtained k = 10 as
the optimal number of clusters for malware and goodware API calls.

As shown in Figure 1, for any API call sequence, we searched the resulted clusters for every API
function in the sequence. When found, the function in the given sequence was be replaced by the cluster
number that contains it. For example, according to the dataset introduced in [17], the following sample
is an API sub-sequence of the malware sequence Worm.Win32.Vob f us.agac : lstrcpyw, getthreadlocale,
lstrcmpiw, globalalloc, globallock, globalunlock, globalrealloc, registerclipboardformatw, registerclipboardformata,
getsystemdirectorya, isdbcsleadbyte, getversion, virtualallocex, getcommandlinea, getstartupinfoa.

According to our model, each API in the previous API sequence will be searched against
the clusters. The following representation denotes the cluster sequence that replaced the above
API sequence:

1,1,1,1,4,4,1,6,4,7,8,1,1,1,1

The conversion of the original calling sequence into cluster sequence is considered the most pivotal
step. Within a limited number of clusters, we got a perfect chance to restrict the sequence combination
possibilities that malware can have. Therefore, malware analysis becomes possible.

3.2. Learning Phase

We can view the clusters generated in the initialization phase (Section 3.1) as a limited collection of
states S where S = {S1, S2, S3, S4,. . . , Sn}. According to our new representation for the calling sequence,
the process, whether it is a malware or goodware, is expressed using a limited number of states called
Markov states. A process normally begins at any state Si, successively it may transit to a different state
Sj as a subsequent action. According to the input sequence, the process can also change its state or wait
in the same state. Therefore, the process is described through generated series of states Si,1, Si,2, Si,3, Si,4,
. . . , Si,k. The movement series across various states are described as transitions between the different
states. Our model relied on a first-order Markov chain to model transition sequences, where a state is
completely counting on its former one. Therefore, a Markov model that has n states will ultimately
have n2 transition probabilities. These transition probabilities can be depicted as n × n matrix.

In our model, we used the maximum likelihood estimation (MLE) [42] to generate the transition
likelihood probabilities, which describes the order of state transitions. Tables 1 and 2 are examples of an
actual cluster transitions’ matrices that were resulted from our experimentation on the dataset in [17].
Table 1 describes the transition probabilities that had arisen among the malware clusters’ states,
whereas Table 2 presents the transition’ probabilities that were emerged among goodware clusters’
states. Both malware and goodware clusters’ transition matrices are regarded as the core of our model.

The transition sequence for any process becomes more reasonable when transforming the
ambiguous cluster sequences into a meaningful form. The main motivation behind the reformulation
is to unveil the behavioral transition of a given process. In another meaning, we require an explicit
form to monitor and describe the malicious and the non-malicious likelihood behaviors for given
malware and goodware sequences, respectively.
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Table 1. Malware cluster transition matrix.

0 1 2 3 4 5 6 7 8 9

0 0.0756 0.4634 0.0363 0.0815 0.1668 0.1161 0.0232 0.0170 0.0019 0.0182
1 0.0638 0.6714 0.0538 0.0401 0.1028 0.0305 0.0209 0.0040 0.0081 0.0047
2 0.0566 0.5672 0.2203 0.0288 0.0432 0.0285 0.0468 0.0010 0.0073 0.0002
3 0.0349 0.5032 0.0007 0.3779 0.0662 0.0004 0.0164 0.0001 0.0000 0.0001
4 0.0770 0.3164 0.0118 0.0233 0.4936 0.0379 0.0180 0.0101 0.0108 0.0009
5 0.1846 0.2373 0.0058 0.0002 0.1060 0.4087 0.0498 0.0021 0.0001 0.0054
6 0.2632 0.0908 0.0007 0.0003 0.0138 0.2772 0.3121 0.0410 0.0000 0.0009
7 0.0026 0.7060 0.0035 0.0039 0.1022 0.0000 0.0001 0.0000 0.1816 0.0001
8 0.0383 0.8785 0.0054 0.0185 0.0534 0.0039 0.0000 0.0001 0.0000 0.0020
9 0.1271 0.1506 0.0027 0.0005 0.2247 0.0028 0.0001 0.0007 0.0007 0.4900

Table 2. Goodware cluster transition matrix.

0 1 2 3 4 5 6 7 8 9

0 0.6651 0.0025 0.0905 0.0047 0.0475 0.1657 0.0046 0.0035 0.0151 0.0008
1 0.0279 0.2257 0.0181 0.0000 0.0005 0.7268 0.0001 0.0004 0.0005 0.0000
2 0.2423 0.0006 0.3210 0.0054 0.0506 0.3484 0.0198 0.0004 0.0048 0.0068
3 0.2934 0.0025 0.1053 0.3580 0.0000 0.1190 0.0278 0.0000 0.0000 0.0941
4 0.3423 0.0009 0.1476 0.0000 0.4013 0.1073 0.0003 0.0000 0.0004 0.0000
5 0.0453 0.0439 0.0419 0.0011 0.0043 0.8591 0.0024 0.0000 0.0004 0.0015
6 0.1632 0.0039 0.2360 0.0943 0.0011 0.1840 0.2444 0.0021 0.0011 0.0697
7 0.3512 0.0000 0.0057 0.0312 0.0000 0.0099 0.0000 0.3494 0.2503 0.0025
8 0.3634 0.0060 0.0068 0.0491 0.0005 0.0215 0.0000 0.1691 0.3836 0.0002
9 0.0759 0.0000 0.1458 0.0363 0.0000 0.1587 0.5273 0.0004 0.0000 0.0557

Throughout our model, we relied on Equation (1) to achieve the required reformulations.
According to Equation (1), the transition probability for a sequence (i, j) will have a value of one
if its corresponding malicious probability is greater than its non-malicious one in cluster transition
matrices. Otherwise, it will receive a value of zero.

sequence(i, j) =

{
1 p(Malware|(i, j)) > p(Goodware|(i, j))

0 Otherwise
. (1)

where (i,j) is referring to the shifting of the sequencing process from state i to state j, p(Malware|(i, j))
and p(Goodware|(i, j)) are referring to the sequence transition in malware and goodware cluster
transition probabilities, respectively.

According to our model, the final classification for a transition, whether it is malicious or not,
is depending on the maximum transition probabilities for the transition in malware and goodware
cluster transition matrices. Accordingly, the transition is changed to one when it is malicious and zero
otherwise. Hence, the whole calling sequence will be transformed into a new series of ones and zeros.
For example, recall the generated cluster sequence which appeared in Section 3.1. Let us examine how
our model determines whether it is malicious or not. Our model needs to determine the following
transition probabilities that characterize the sequence:

p(1,1), p(1,1), p(1,1), p(1,4), p(4,4), p(4,1), p(1,6), p(6,4), p(4,7), p(7,8), p(8,1), p(1,1), p(1,1), p(1,1)

The probability of each transition will be fetched from malware and goodware cluster transition
matrices in Tables 1 and 2, respectively. Table 3 showed the transition probabilities’ tracing for
the preceding sequences. Consequently, the formulation outcome of both malware and goodware
transitions will be: 1 1 1 1 1 1 1 1 1 0 1 1 1 1.

Our proposed model used the newly formulated sequences to generate generic behavioral models
that characterize malicious and non-malicious sequences. Once more, we used the maximum likelihood
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estimation to generate transition models for malware and goodware. The learning phase finishes its work
by producing two behavioral models: the malware and goodware models (Figure 2a,b, respectively).
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(a) Malware Model
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0.678
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Figure 2. Behavioral malware and goodware models.

Table 3. Formulating the transitions’ probabilities for sequence 1,1,1,1,4,4,1,6,4,7,8,1,1,1,1.

Sequence Transition p(1,1) p(1,1) p(1,1) p(1,4) p(4,4) p(4,1) p(1,6) p(6,4) p(4,7) p(7,8) p(8,1) p(1,1) p(1,1) p(1,1)

p(sequence, Malware) 0.6714 0.6714 0.6714 0.1028 0.4936 0.3164 0.0209 0.0138 0.0101 0.1816 0.8785 0.6714 0.6714 0.6714
p(sequence, Goodware) 0.2257 0.2257 0.2257 0.0005 0.4013 0.0009 0.0001 0.0011 0.0000 0.2503 0.0060 0.2257 0.2257 0.2257

Formulation 1 1 1 1 1 1 1 1 1 0 1 1 1 1

3.3. Testing Phase

Generally, the intended purpose of the testing phase is to investigate the performance of our
model in distinguishing newly sequences. Therefore, we provided our model with an unseen test set
of malware and goodware sequences. As shown in Figure 1, the testing phase initially reformulates
the input sequences as in the demonstration shown in Table 3.

We examined each sequence against both malware and goodware transition matrices. The model
stores the transition probability when the sequence progresses from one state into another one. Our
model relies on maximum cumulative likelihood of transition probabilities to determine whether a
sequence is malicious or not. Accordingly, the formulated sequence that was generated for the example
in Section 3.2 will be tested against malware and goodware models as shown in Table 4.

As depicted in Table 4, since the sequence accumulated likelihood for in the malware model is
greater than its goodware, the sequence is regarded as malicious. Figure 3 shows a graphical illustration
that describes how our model decides whether a sequence is malicious or not. We used some parts
from the example in Section 3.2 for more clarification.

Table 4. Parsing of sequence (1 1 1 1 1 1 1 1 1 0 1 1 1 1) against malware and goodware models.

Input Sequence 1 1 1 1 1 1 1 1 1 0 1 1 1 1 Likelihood
AccumulationSequence Transitions p(1,1) p(1,1) p(1,1) p(1,1) p(1,1) p(1,1) p(1,1) p(1,1) p(1,1) p(1,0) p(0,1) p(1,1) p(1,1) p(1,1)

Likelihood (Malware|Sequence) 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.052 0.824 0.948 0.948 0.948 12.252
Likelihood (Goodware|Sequence) 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.678 0.066 0.322 0.322 0.322 4.608



Appl. Sci. 2020, 10, 7673 8 of 15

1,1,1,1,4,4,1,6,4,7,8,1,1,1,1

1 1 1 1 1 1 1 1 1 0 1 1 1 1

0.176

G

0.824

0.052

0.948

0 1

Maximim Likelihood(( Malware |sequence), (Goodware | sequence)) 

Cluster sequences

Malware 
Clusters' transitions

Goodware 
Clusters' transitions

Transition sequences

Malware Model Goodware Model 

Sequence Reformulation 

Formulated sequence

Sequence classi�cation

-Search Clusters for each API
-Replace API with the cluster number that have it 

p(1,1), p(1,1), p(1,1), p(1,4), p(4,4), p(4,1), p(1,6), p(6,4), p(4,7), p(7,8), p(8,1), p(1,1), p(1,1), p(1,1)

lstrcpyw, getthreadlocale, lstrcmpiw, globalalloc, globallock, globalunlock, globalrealloc, registerclipboardformatw, 
registerclipboardformata, getsystemdirectorya, isdbcsleadbyte, getversion, virtualallocex, getcommandlinea, getstartupinfoa

API call sequence

0.935

0.066

0.678

0.322

10

Figure 3. Graphical description for tracing a sequence.

4. Results and Discussion

Throughout this section, we evaluate our model through various datasets using standard
evaluation metrics. We show that our model could efficiently recognize whether a sequence of
API calls leads to malicious activities or not.

4.1. Datasets

To verify our model, we gathered varieties of API call sequences from [17,43,44]. We carried out
our experiments with various datasets of different sizes to observe the efficiency of our model against
the size of data.

4.2. Evaluation Metrics

Our model evaluation used well-known evaluation metrics such as precision, recall, F-measure,
and accuracy. We also used other evaluation metrics inspired by the confusion matrix, such as
false-positive rate (FPR) and false-negative rate (FNR). These measures assess the performance quality of
the classification methods.

Precision =
TruePositives(TP)

TP + FalsePositives(FP)
(2)

Recall =
TP

TP + FalseNegatives(FN)
(3)

F−measure =
2 · precision · recall
precision + recall

(4)
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Accuracy =
TP + TrueNegatives(TN)

TP + TN + FP + FN
(5)

FalsePositiveRate =
FP

FP + TN
(6)

FalseNegativeRate =
FN

FN + TP
(7)

4.3. Malware Detection Evaluation

In our experimentation, we split our data into 50% for training and 50% for testing. Throughout
the training process, we implemented a modified version of the k-fold strategy called the random
subsamples (with replacement). The implemented model is slightly different from the k-fold in that,
during each iteration, the selection of the training and testing samples are performed at random.
The superiority of random subsamples (with replacement) comes from its elastically to determine
the number of iterations and the size of training and testing samples. Our training samples were
populated at random while maintaining a condition of eliminating any duplication for samples that
may exist in the training or testing samples.

Our model avoided the training bias through performing our experiments 10 times for each
dataset. We calculated the average returned results for all experiments per each dataset to be its
final evaluation measure. Experimental results demonstrated high proficiency in detecting and
discriminating unseen samples.

Our model has a high accuracy detection rate with tiny false positives. Table 5 shows that
our method provides an average precision, recall, F-measure, and accuracy of 0.990, an average
false-positive rate of 0.010, and an average false-negative rate of 0.010.

We experimented with our model against new unseen test samples to prove its validity and
efficiency. The new samples contain 701 malware samples from https://github.com/duj12/cnn-
lstm-based-malware-document-classification and 300 goodware samples from https://github.com/
leocsato/detector_mw. According to the accuracy measures, as described in Table 6, our proposed
model showed a considerable detection accuracy of 0.983, along with a false-positive rate of 0.034.

Table 5. Model detection evaluation.

Datasets Accuracy Measures
Precision Recall F-Measure Accuracy FPR FNR

Ki et al., 2015 [17] 0.999 0.998 0.999 0.999 0.001 0.001
Kim et al., 2018 [44] 0.994 0.986 0.990 0.990 0.006 0.014

CSDMC [43] 0.987 0.982 0.985 0.985 0.012 0.018
Catak et al., 2020 [45] 0.980 0.994 0.987 0.987 0.020 0.007

Average 0.990 0.990 0.990 0.990 0.010 0.010

Table 6. Model performance against unseen samples.

Datasets Accuracy Measures
Precision Recall F-Measure Accuracy FPR FNR

Testing Dataset 0.965 1.000 0.983 0.983 0.034 0.000

According to the malware detection accuracy measures, Table 7 showed that our proposed work
outperformed other peer dynamic analysis approaches that used the API call sequence. We compared
our results with different approaches to prove its competency. Our model showed an average accuracy
of 0.999, which is considered the most trustworthy one compared to other approaches.

https://github.com/duj12/cnn-lstm-based-malware-document-classification
https://github.com/duj12/cnn-lstm-based-malware-document-classification
https://github.com/leocsato/detector_mw
https://github.com/leocsato/detector_mw
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Table 7. Comparison with other works.

Study # of Malware F-Measure Accuracy Used Feature

Ahmed et al., 2009 [46] 416 - 0.980 API call sequence
Rieck et al., 2011 [47] 3133 0.950 - API call sequence
Qiao et al., 2014 [6] 3131 0.909 - API call sequence
Qiao et al., 2013 [48] 3131 0.947 - API call sequence

Ki et al., 2015 [17] 23,080 0.999 0.998 API call sequence
Catak et al., 2020 [45] 7101 - 0.950 API call sequence

23,080 0.999 0.999 API call sequence
151 0.990 0.990 API call sequence
320 0.985 0.985 API call sequenceProposed Work

7107 0.987 0.987 API call sequences

4.4. Fake Goodware Detection

Despite our perceptible model accuracy in recognizing malware, there were particular types of
malware samples falsely identified as goodware. When we investigated those kinds of examples,
we discovered that malicious transitions are surrounded by many non-malicious ones. Therefore,
those types of malware contain many non-malicious transitions compared to malicious ones. In other
meaning, those kinds of malware samples are falsely acting as goodware ones. Our model identified
these kinds of mimicry malware or fake goodware sequences through tracking their likelihood behavior.

Our experiments showed that most malware samples contain a majority of malicious transitions.
However, we showed that malware transitions might also include partial non-malicious transitions,
even if it does not affect its malicious collective likelihood behavior. However, in malware mimicry, we
noticed that the API call sequence contains a significant amount of non-malicious transitions compared
to malicious ones. In addition, we observed a continually changing behavior for those fake goodware
samples during progressive transitions. Therefore, in our model, we used the behavior inconsistency as
a sign, which indicates that a sequence is performing malicious activities.

To clarify our opinion, we provided sample sequences in Figures 4a and 5a. Both sequences
are malware transition sequences. However, our model correctly recognizes the first sequence in
Figure 4a as malware. In contrast, it misclassified the second one and identified it as a goodware.
When we investigated the transition sequence in Figure 4a, we observed that it contains a plurality of
malicious transition sub-sequences (transitions of contiguous 1s) in comparison to the non-malicious
sub-sequences (transitions of contiguous 0 s). However, in the second sequence shown in Figure 5a, we
found that it includes a plurality of non-malicious transition sub-sequences compared to the malicious
sub-sequences. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,0,
0,1,0,1,0,1,1,1,1,1,1,1,0,1,0,0,1,1,0,0,1,0,0,0,0,1,1,0 

(a) (b)

Figure 4. Real malware transition behavior. (a) Transition sequence for real malware; (b) cumulative
evolutionary behavior likelihood for the sequence in Figure 4a.
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(a) (b)

Figure 5. Mimicry malware transition behavior. (a) Transition sequence for fake malware; (b)
cumulative evolutionary behavior likelihood for the sequence in Figure 5a.

When we inspected both sequences’ behavior, as shown in Figures 4b and 5b against our malware
and goodware models in Figure 2a,b, we noticed an exceptional distinction between both behaviors.
Figures 4b and 5b explain the relationship between the successive transitions sequence (x-axis) and
the associated collective evolutionary behavior likelihood (y-axis) for sequences in Figures 4a and 5a,
respectively.

In Figure 4b, we observed that, although both malicious and non-malicious behaviors are growing,
they are not scaling at the same rate. In another meaning, there is a continual separation gap between
both behaviors during the progressive transitions. In contrast, the behaviors in Figure 5b converge and
intersect at some progressive transition.

BM(S) =
∑n

i=1(Malware |∑ p(T(1 : i)) < (Goodware |∑ p(T(1 : i))
L(S)

(8)

In our model, we utilized the behavior monitoring (BM) as a heuristic that identifies whether a
sequence retains or modifies its behavior while being examined by our model. Equation (8) describes
the behavioral intersection ratio where:

• S denotes the input sequence,
• n is the total number of transitions of a given sequence,
• ∑ p((T(1 : i)) refers to cumulative transition probabilities for the sequence up to the i-th transition

in malware and goodware models,
• The exterior summation counts the events concerning the internal comparison between the two

inner sums judged as true.

The behavior monitoring equation originally assumes that any given sequence is non-malicious
until its behavior shows the opposite. Therefore, it continually tracks the sequence transitions’
likelihood probabilities’ in malware and goodware models simultaneously. When the sequence
is malicious, as in the transition sequences in Figure 4a, then the accumulated malicious likelihood will
be greater than its accumulated non-malicious likelihood. In other words, the differences between both
behavioral likelihood accumulations in real malware will always be positive. However, in the case of
fake goodware, as in the transition sequences in Figure 5a, the differences between both behavioral
likelihood accumulations are inconsistent and tend to be negative during progressive transitions.

Our analysis concluded that a sequence is recognized as malicious if it has a cumulative changing
behavioral ratio of 10% among its transitions. We examined our conclusion with malware false
positives that emerged through our experiments in Table 5. As clarified in Table 8, our heuristic is
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capable of identifying malware mimicry sequences and recognizing them as a possible malicious
sequence with an average detection accuracy of 0.993. The high accuracy in detecting mimicry malware
adds another reliability dimension to our model in identifying malware.

Along with monitoring the sequence behavior, there is a necessity for estimating the malicious
degree of the sequence. Therefore, we have adjusted with a minor change the heuristic that monitors
the sequence behavior to perform as a behavior confidence factor (BCF). Through assessing the
sequence behavior, the sequence is also given a behavioral evaluation. Equation (9) describes how we
evaluate the malicious ratio for a sequence where:

• the numerator denotes the number of times where the inner comparison is evaluated as false,
• T(S) denotes the total number of transitions in the sequence S.

BCF(Malware|S) = ∑n
i=1[(Malware |∑ p(T(1 : i)) < (Goodware |∑ p(T(1 : i))]

T(S)
(9)

To clarify the assessment evaluation process for the behavioral sequence, we also relied on the
transition sequences in Figures 4a and 5a. Figure 4a contains 469 transitions, including (423 malicious
transitions and 46 non-malicious transitions). According to Equation (9), the behavior confidence
factor will be 423

469 = 0.92, which is interpreted as the sequence is malicious with a confidence factor of
92%. However, the transition sequence in Figure 5a contains 562 transitions, including (232 malicious
transitions and 330 non-malicious transitions). Accordingly, the sequence is malicious with a confidence
factor 41%.

Even with the indecisive confidence factor for the sequence in Figure 5a, the behavioral monitoring
value is complementing the shortage that may occur when relying only on the behavioral confidence
factor. Therefore, any sequence can be classified through the behavioral monitoring heuristic and
assigned a confidence score through the confidence factor equation.

Table 8. Malware false positive detection evaluation.

Dataset Accuracy

Ki et al., 2015 [17] 0.999
Kim et al., 2018 [44] 1.000

CSDMC [43] 1.000
Catak et al., 2020 [45] 0.973

Average 0.993

5. Conclusions

Throughout our paper, we proved that the contextual understanding of the API call sequence
has enhanced malware detection accuracy. Our proposed model has employed word embedding to
understand the latent contextual relations among individual APIs. We have created an API embedding
model for Windows APIs. Through clustering APIs that are contextually related, our model has
overcome the API tracking impossibility problem due to its huge number. Consequently, any API call
sequence for a process could be represented using a finite number of cluster sequences. Our paper
proposed generic behavioral models for malware and goodware. Experiments have proved the
exceptional accuracy that our model returned. We have addressed and proposed a heuristic that
detected mimicry malware sequence. The comparisons with peer approaches have proven that our
empirical model is promising.
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