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Abstract: This paper presents a system for medical image diagnosis that uses transfer learning (TL)
and feature selection techniques. The main aim of TL on pre-trained models such as MobileNetV3
is to extract features from raw images. Here, a novel feature selection optimization algorithm
called the Artificial Hummingbird Algorithm based on Aquila Optimization (AHA-AO) is proposed.
The AHA-AO is used to select only the most relevant features and ensure the improvement of the
overall model classification. Our methodology was evaluated using four datasets, namely, ISIC-2016,
PH2, Chest-XRay, and Blood-Cell. We compared the proposed feature selection algorithm with five
of the most popular feature selection optimization algorithms. We obtained an accuracy of 87.30% for
the ISIC-2016 dataset, 97.50% for the PH2 dataset, 86.90% for the Chest-XRay dataset, and 88.60% for
the Blood-cell dataset. The AHA-AO outperformed the other optimization techniques. Moreover,
the developed AHA-AO was faster than the other feature selection models during the process of
determining the relevant features. The proposed feature selection algorithm successfully improved
the performance and the speed of the overall deep learning models.

Keywords: medical image classification; MobileNet; feature selection algorithms; Aquila Optimization;
Artificial Hummingbird Algorithm

1. Introduction

Recently, automatic medical image recognition (AMIR) techniques have gained more
attention, since they have been applied for the diagnosis of diseases at early stages [1,2]. To
handle this task, several methods that depend on the use of different techniques have been
developed [3–5]—for example, machine learning methods for inverse problems that arise
in medical [6,7] and super-resolution methods [8–10]. In the same context, deep learning
(DL) has become one of the most widely used AMIR methods for this task [11]. DL models
have achieved impressive predictive capabilities and have outperformed clinicians [12].
Despite the notable success of DL models, they still require large volumes of labeled
training samples. Therefore, to address this limitation, transfer learning (TL) has been
adopted [13]. Typically, TL uses a pre-trained model, which is typically trained on a very
large image dataset (e.g., ImageNet). Then, the model is fine-tuned using a smaller dataset.
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Experimentally, TL has become the go-to methodology for training image classification
models [14,15]. These models are used to extract features from datasets and then use
those features to improve the prediction process. However, there are irrelevant and noisy
features that can lead to the degradation of the prediction quality. Therefore, feature
selection techniques can be used to tackle the process. This can be achieved by removing
these irrelevant features. This can lead to the improvement of medical image recognition
models [16], computational costs [4], and parameterization [17].

Moreover, feature selection based on meta-heuristic (MH) optimization techniques
has been proven to be effective in addressing a wide variety of real-world applications.
Instead of a single solution in traditional optimization, a set of potential solutions enables
them to effectively explore the optimal solution. Various MH methodologies have been
proposed for computer-aided diagnosis [18]. To minimize the number of parameters
(weights) in a convolutional neural network (CNN), Samala et al. [19] proposed a technique
for multidimensional path building to detect breast cancer. They utilized two techniques:
transfer learning and recognizing characteristics. CNNs pre-trained with significant lesions
were used. This was followed by a random forest classifier, and they used a genetic
algorithm (GA) with random selection and crossover. Their study observed a significant
variation in features and a decrease in parameter activities when using their proposed
approach. Surbhi et al. [20] used adaptable PSO for automated diagnosis of brain tumors by
using the gray-level cooccurrence matrix (GLCM) to extract features. This model improved
the image quality and eliminated noise treatment, and bone strips were performed.

In general, there are several methods of FS based on MH techniques. DL models have
been proposed to improve medical image classification. However, these methods suffer
from some limitations that affect their performance in classification. For example, the MH
technique can attract local optima, and this can lead to the degradation of the efficiency
of the model through the selection of irrelevant features. This motivated us to propose an
alternative medical image classification technique using the integration of TL for feature
extraction and the modified Artificial Hummingbird Algorithm (AHA) [21] as a feature
selection technique.

The Artificial Hummingbird Algorithm has been proposed as an optimization tech-
nique and applied for solving different optimization problems, such as determining the
optimal allocation of renewable distributed generators (RDGs) [22], engineering design
problems [23], predicting the tribological behavior of Cu-Al2O3 [24], and optimal planning
of multiple-renewable-energy-integrated distribution systems [25]. However, by analyzing
the performance of the AHA, we found that there is clear room for improvement during the
exploitation of the search domain. Therefore, the Aquila Optimization (AO) algorithm [26]
is applied to achieve this task. AO has been applied to different applications, including
hyperspectral image classification [27], Cox proportional hazards [28], and semi-/fully
automated segmentation of gastric polyps [29].

The medical image classification technique developed here depends on the integration
of the advantages of TL and feature selection (FS) based on MH methods. The first step
in this model is to split the dataset into training and testing sets. Then, the training set is
used to teach the developed model, and this is performed in two stages. The first stage
is the use of the TL technique to generate context-specific representations. Thus, a fine-
tuned MobileNetV3 is used to extract the features. The second stage is the presentation
of a new FS method for filtering the extracted features of the image and picking only
the most relevant features to enhance the overall model for medical image classification.
The presented FS model depends on the improvement of the performance of the AHA by
using the AO algorithm. This can be done by generating a set of solutions that refer to the
subset of selected features. Then, the quality of these solutions is assessed by using the
error classification and the ratio of selected features as fitness values. After that, the best
solution is allocated. This provides a better fitness value. Thereafter, a competition between
the operators of the AHA and AO is applied to update the solutions. The next process
is the assessment of the efficiency of the selected solution according to the best solution.
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This is carried out by removing the irrelevant features from the testing set and using
performance measures to compute the efficiency of the classification process. The main
difference between the method developed here and the other techniques is the integration
between MobileNetV3 and the FS based on a modified version of AHA using the AO
algorithm. Each of these techniques has its own strengths that lead to the improvement
of the convergence rate and the quality of the selected features. This will influence the
performance in classification.

The contributions of this study are as follows:

• Proposal of a novel FS method based on improving the behavior of the Artificial
Hummingbird Algorithm using Aquila Optimization. This model aims to choose the
most important features from each image representation to make the classification
process more efficient (using a reduced set of features).

• Presentation of a comprehensive experimental study of the proposed system with a
comparison of the proposed method with various state-of-the-art methods by utilizing
four real-world datasets.

The organization of the article is as follows. An overview of current work on diagnostic
imaging is given in Section 2. In Section 3, in addition to Aquila Optimization (AO) and the
Artificial Hummingbird Algorithm (AHA), we provide the background of transfer learning
for feature extraction. Section 4 provides a detailed presentation of the proposed system.
Section 5 presents the experimental results of our image classification technique. Section 6
discusses the drawbacks of the proposed image recognition method. Lastly, in Section 7,
the paper is summarized, and directions for future work are given.

2. Related Work

Ayan and Ünver [30] used the Xception and VGG16 structures to fine-tune transfer
learning. The design of Xception was substantially altered with the addition of two fully
linked levels and multiple-output tiers with a SoftMax activation mechanism. As per the
theory, the channel’s initial layer has the greatest potential for generality. The previous
eight layers of the VGG16 architecture have been stopped, and the fully linked levels have
been altered. Similarly, the testing periods for every image were 16 ms for the VGG16
and 20 ms for the Xception network. The methods used in [31] included InceptionV3,
ResNet18, and GoogLeNet. A conclusion was reached by using convolutional networks.
To see whether a vote might be utilized to come to an accurate diagnosis, they tested each
model against the premise. The classifier results were merged by using the strong majority
in this investigation. This meant that the diagnosis went with the group that had a high
proportion of first-time voters. According to the average of this model’s testing results, this
approach took an average of 161 ms per image. On top of that, they were able to classify
X-ray images with great accuracy. Pneumonia could be detected using deep CNNs, as per
the results of this research. We used standard algorithms as a component in our approach
to categorize data in order to keep computation costs at a minimum.

The results were obtained in many test sets by utilizing bi-linear classification methods
and SVM classifiers to extract features from the VGG and ResNet models [32]. About
13 W of dermatological images were trained using a mix of data-driven methods and
InceptionV3, with results in the test dataset that were similar to those of dermatologists,
as reported in [33]. The ISBI-2016 skin lesion analysis approach for cancer diagnosis [34]
used skin lesion fragmentation to classify cancer. As a consequence, a move-categorization
process was recommended for classification purposes. The use of several convolutional
neural networks (CNNs) combined with dynamic pattern training simulated intra-class
fighting amongst cancer cells and the background noise that resulted from this [35]. Instead
of starting from scratch with random initialization settings, Kawahara et al. [36] used a
pre-trained CNN to detect skin images across a whole dataset. After this pre-training,
the CNN’s training time was cut in half, resulting in an accuracy rate of 84.8% for five
different courses. Lopez et al. [37] used a DL technique for early diagnosis. TL was used
to create this VGGNet-based model. The generated model had a primary collection of
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78.56% when used with the ISIC-2016 archive data. The expanded and un-augmented
data from [38] were used to evaluate the performance of a CNN model for the detection of
lesions. According to the authors, DL methods may be beneficial, but there is little evidence
to support them. A more significant dataset improved the network performance of the
classifier over a model that did not have it.

CNNs have been widely used in medical image analysis in recent years because of
their broad feature extraction abilities, which have shown impressive results. Yu et al. [34]
presented a multi-stage residual-network-based approach to automatically detecting ma-
lignant tumors in dermoscopic images in order to identify melanomas. VGG and ResNet
networks bi-linearly combined with SVM classifiers yielded some of the highest detec-
tion scores on several testing datasets, with high-level information being collected by
Ge et al. [32]. Based on [39], a multi-level fully convolutional network was built. Using
multi-CNN cooperation, Zhang et al. [40] created a model for identifying target class
lesions. Their method was more accurate in detecting lesions, and its usefulness was
tested with the right information. It was possible to build a robust ensemble structure for
early cancer diagnosis by using dynamic classification methods. Thus, we could build
an improved and distinguishable model. In [41], the authors proposed a cross-net-based
combination of several fully convolutional networks in order to detect skin lesions on their
own for this purpose. MobileNet and DenseNet were linked [42] for the classification of
melanomas.

The use of meta-heuristic optimization methods has proven effective in resolving a
wide variety of challenging optimization issues. For example, Shankar, K. et al. [43] created
a new idea for Alzheimer’s disease by utilizing neuroimaging analytics with the Gray Wolf
Optimization (GWO) technique. Getting rid of unwanted areas is an excellent place to
start when doing any photo editing. To further enhance speed, recovered images were
submitted to a CNN for the extraction of features. Using OptCoNet, which was developed
by Goel et al. [44], they claimed to be able to distinguish between normal individuals with
COVID-19 and those with pneumonia. They used the GWO to fine-tune the convolution
layer’s hyperparameters. Their research revealed that the suggested method helped with
automated patient examinations and decreased the workload of the model’s medical frame-
work. Mohamed et al. [45] used the Dragonfly and enhanced Firefly Algorithms (FFA)
to classify images as normal or anomalous in order to develop the design for denoising
images. Because of this change, the maximum transmission ratio dropped substantially,
resulting in better performance. The use of the Whale Optimization Algorithm (WOA) and
Levy flight in [46] improved melanoma detection. Two datasets were analyzed with the
newly created architecture, with an efficiency of 87% on both. When confronted with a vast
solution space [47], some models experienced premature convergence and local minima.
This constraint often leads to sluggish model stability due to poor scheduling algorithms.
We urgently need a worldwide solution to the task-scheduling issue. As a result, the goal
of this article is to identify the best options for improving the rate of convergence.

3. Background
3.1. Efficient Neural Networks

Computer vision applications, such as image classification, image segmentation, and
object detection, have been dominated by deep learning models that have been applied dif-
ferently and implemented in novel architectures [48,49]. For instance, convolutional neural
networks have been widely exploited due to their well-known ability of automatic feature
extraction. However, deep learning models are not always efficient, and their performance
is not always optimal due to several challenges, including the lack of data and the quality
of the learned representations, hyperparameters, and network structure (components),
leaving a large margin for improvement and optimization. Recently proposed networks,
such as MobileNetV3 [50], EfficientNet [51], DenseNet[52], and MnasNet [53], have been
successfully applied in computer vision tasks in which the researchers’ goal was the opti-
mization of the network structure, time and resource complexity, and overall performance
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of the model. The depthwise convolution structure proposed in an efficient DL model such
as MobileNetV3 can be used to replace the canonical convolution structure. The proposed
depthwise convolution structure is more efficient than the canonical convolution structure
in terms of the exploitation of spatial information, which is applied separately on each
input channel, and the minimization of the model size [54].

Furthermore, efficient models that adopt the depthwise convolution structure use
fewer resources and fewer training parameters, provide a higher prediction quality, and
take a short time to train. In addition, various techniques have been adopted to increase the
efficiency of DL models, including knowledge distillation, weight sharing, data augmenta-
tion, data parallelism, matrix factorization, and attention mechanisms [55]. For instance,
knowledge distillation transfers the knowledge learned by a teacher (original) model to
a student (distilled/new) model. The weight-sharing technique uses pre-trained model
weights on large amounts of data to improve the new model’s performance without re-
training from scratch. Data augmentation uses different data transformation techniques
to increase the size of the training data. Data parallelism uses multiple training devices,
such as GPUs or TPUs, to boost the training speed. Matrix factorization tends to reduce the
model size alongside the feature representation space of the feature vectors. An attention
mechanism boosts a model’s robustness by focusing on the most relevant features dur-
ing the learning process rather than considering all features. For example, MobileNetV3
improves the latency and accuracy over those of the previous versions by 3.2% and 20%,
respectively, in comparison with MobileNetV2 through the adoption of the following tech-
niques and components: using the NetAdapt algorithm as a network architecture search
(NAS) to select the optimal network structure, depthwise separable convolution, 1× 1 con-
volution (pointwise convolution), an inverted residual block [56], a squeeze-and-excite
block (SE block) [53], and the h-swish activation function [57,58]. In this study, we used
MobileNetV3 as our main feature extractor in the proposed framework; more details on the
network architecture and the parameters are introduced in Section 4.

3.2. Aquila Optimizer (AO)

This section presents the basic formulation of Aquila Optimization (AO) algorithm [26].
The AO algorithm generally imitates Aquila’s social behavior to catch its target. AO is a
population-based optimization algorithm that is equivalent to other metaheuristic (MH)
algorithms and generates a population X of N solutions. To carry out this technique, the
following equation was employed:

Xji = LBi + r1 × (Ui − Li), , j = 1, 2, ....., N i = 1, 2, . . . , D (1)

where Ui and Li are the search domain’s boundaries. r1 represents random numbers whose
values are in the interval [0, 1] and a D-dimensional space.

The following phase in the AO technique is for either exploring or exploiting until
the best solution is identified. According to [26], exploration and exploitation can be
accomplished with two approaches.

Exploration uses the best solution Xnew and the average of the solutions (Xavg), and its
mathematical formulation is as follows:

Xj(t + 1) = Xnew(t)×
(

1− e
E

)
+ (Xavg(t)− Xnew(t) ∗ rand), (2)

Xavg(t) =
1
N

N

∑
i=1

X(t), ∀i = 1, 2, . . . , D (3)
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The greatest number of epochs is denoted by E.
(

1−e
E

)
is used to control the searching

ability of AO in the exploration stage. The Levy flight L and Xnew are used in the exploration
stage to upgrade the solutions, as introduced in the following equation:

Xj(t + 1) = Xnew(t)× L + Xrand(t) + (y− x) ∗ random, (4)

L = s× r2 × σ

|r3|
1
β

, σ =

Γ(1 + β)× sine(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

, β = 1.5, s = 0.01 (5)

In Equation (5), r2 and r3 are values that are generated at random. Xrand refers to a
random solution. Moreover, a spiral shape is formed by using the two parameters y and x,
which are defined as:

x = R× sin(θ), y = R× cos(θ) (6)

R = r1 + Q× D1, θ = −S× D1 + θ1, θ1 =
3× π

2
, Q = 0.00565, S = 0.005 (7)

where r1 ∈ [0, 20] is a random value.
Similarly to exploration, the initial strategy employed in [26] to boost the solutions in

the exploitation phase was based on Xnew and Xavg, and it is defined as:

Xj(t + 1) = (Xnew(t)− Xavg(t))× α− r + (U × r + L)× δ, U = (U − L) (8)

where α and δ are the adjustment parameters used during the exploitation phase. r ∈ [0, 1]
refers to a random value. Moreover, in the second strategy of exploitation, the solution will
be updated by using the quality function (QF), L, and Xnew. This can be achieved with the
following formula:

Xj(t + 1) = QF× Xnew(t)− G(G1 × X(t)× r)− G2 × L + r× G1 (9)

QF(t) = e
2×r()−1
(1−E)2 (10)

where G1 and G2 represent a parameter of the motions applied to track Xb and a parameter
that decreases from 2 to 0, respectively; these parameters are defined as:

G1 = 2× r()− 1, G2 = 2× (1− e
E
) (11)

Figure 1 depicts the steps of AO.

Figure 1. Flowchart for AO.
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3.3. Artificial Hummingbird Algorithm

In this section, we will go over the methods of a new MH methodology called the
Artificial Hummingbird Algorithm (AHA), which simulates hummingbird activity. Axial,
diagonal, and omnidirectional flights are the three forms of flight abilities; these abilities
are used for foraging techniques. There are also other sorts of search tactics, such as guided,
migrating, and territorial foraging, as well as a visit table to mimic a hummingbird’s
memory. The initial population X of N hummingbirds is constructed using Equation (12).

Xj = LB + r× (UB− LB), j = 1, 2, . . . , N (12)

In Equation (12), LB and UB represent the boundaries of the search domain. r ∈ [0, 1]
is a random vector. Moreover, the visit table of the best solution is formed as:

VTji =

{
0 i f j 6= i
null j = i

, j = 1, . . . , N, i = 1, . . . , N (13)

In the case of i = j, VT ji = null refers to the amount of food consumed by a humming-
bird at a certain food source. In contrast, VT ji = 0 refers to the jth hummingbird visiting
the food source i.

3.3.1. Guided Foraging

A hummingbird is assumed to search for food at the maximum visit rate and then select
the one with the maximum nectar-refilling rate from X as its optimal solution for the guided
foraging behavior. This foraging makes use of the three flight abilities of omnidirectional,
diagonal, and axial flight. The concept of axial flight is shown in this formula:

Di =

{
1 i f i = R
0 else

, i = 1, . . . , d, (14)

In addition, the concept of diagonal flight is shown as follows:

Di =

{
1 i f i = P(j), j ∈ [1, k], i = 1, . . . , d,

0 else
. (15)

P = randperm(k), k ∈ [2, d r1(d− 2)e+ 1]

The concept of omnidirectional flight can be formulated as:

Di = 1, i = 1, . . . , d, (16)

where R represents random values in the interval [1,d] and r1 ∈ [0, 1] is a random number.
randperm(k) stands for a random integer in [1, k], and the behavior of guided foraging can
be represented as:

Vi(t + 1) = Xi,t(t) + a× D× (Xi(t)− Xi,t(t)), a ∈ N(0, 1) (17)

In Equation (17), Xi,t(t) stands for the ith food source at the tth iteration. Xi,t(t) refers
to the target solution visited by hummingbird i. Therefore, Xi can be updated as:

Xi(t + 1) =
{

Xi(t) i f f (Xi(t)) ≤ f (Vi(t + 1))
Vi(t + 1) otherwise

(18)

where f is the fitness value.

3.3.2. Territorial Foraging

Once the flower nectar has been consumed, a hummingbird is more likely to search for
a new source of food than to visit other flowers. As a result, the bird may readily migrate
to a nearby spot inside its own territory, where a new food source could be located as a
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potential replacement for the existing one. The mathematical formula designed to simulate
hummingbirds’ local foraging behavior and a potential food source is as follows:

Vi(t + 1) = Xi,t(t) + b× D× Xi(t), b ∈ N(0, 1) (19)

3.3.3. Migration Foraging

In the case that a hummingbird’s favorite feeding spot runs out of food, it migrates to a
more distant spot. A migration coefficient is computed using the AHA. The hummingbird’s
process of finding a food source with one of the worst nectar-refilling rates will result in
its transition to a new food picked at random from the entire search space if the number
of iterations surpasses the migration coefficient’s predetermined value. As a result, this
hummingbird will stop eating at the old source and start eating at the new one, changing
the visit table. The following is a description of a hummingbird’s migration foraging from
the source with the lowest nectar-refilling rate to a new one produced at random:

Xw(t + 1) = LB + r× (UB− LB), (20)

where Xw refers to the worst fitness value. The steps of the AHA are given in Figure 2.

Figure 2. Steps of the AHA.

4. Proposed Method
4.1. Deep Learning for Feature Extraction

This section presents detailed information about the implementation of MobileNetV3
used in our framework for medical image feature extraction. To benefit from the transfer
learning technique, we used the pre-trained weights of MobileNetV3 on the ImageNet
dataset [56] to acquire the knowledge of previously trained models with different settings
and to fine-tune the weights on the medical datasets used in our study. The model takes
a 224× 224 image as an input and outputs a feature vector of size 128 to be exploited
in the feature selection phase. In addition, we only trained specific layers of the model
to reduce the training time and the model size; the top layers were replaced with 1× 1
point-wise convolution layers for the extraction of features and classification of images.
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More specifically, the weights of MobileNetV3 were kept fixed during the fine-tuning
process, which included 16 bottleneck layers, a 2D convolution layer, and an adaptive
average pooling layer, as shown in Figure 3. Meanwhile, we updated the weights of
the new layers during the training process, and they replaced the vanilla MobileNetV3
classifier’s layers (top layers) with two 1× 1 point-wise convolution layers for feature
extraction and classification, respectively. Our experiments used different medical image
datasets to fine-tune the MobileNetV3-Large version of the MobileNetV3 and perform
feature extraction. Figure 3 shows the model architecture that was implemented and
integrated as the backbone feature extractor of our proposed framework.

Input Image

Data 
Augmentation

Predicted class

Convolution 2D layer

Bottleneck layers 
x16

Convolution 2D layer

Adaptive average
pooling

1x1 pointwise
convolution

1x1 pointwise
convolution

Feature
extraction

Classification

Feature selection

1x1 expansion
convolution

Depthwise
separable

convolution

1x1 projection
layer

SE
block

Skip connection
Inverted residual block

Figure 3. The architecture of the model used for feature extraction.

MobileNetV3 was fine-tuned to boost performance in medical image classification,
where the learned activation values of a certain layer were stored as vectors representing
the input images. The model was composed of 16 bottleneck layers [56] containing inverted
residual blocks, which were kept fixed during the fine-tuning process, and only the top
layers were used to learn the characteristics of the training samples from each medical
dataset. The inverted residual blocks’ core component was the depthwise separable con-
volution layer. In addition, in a certain layer, the depthwise separable convolution layer
could contain a squeeze-and-excite (SE) block [53], which was used for relevant feature
selection on a channel-wise basis. A 3× 3 depthwise separable convolution replaced the
point-to-point convolution by using one filter for each input channel, which helped to
reduce the model’s computational complexity. The 1× 1 point-wise convolution was used
on all of the channels in the inverted residual block to convert the output into a linear
combination, which can be seen as a multilayer perceptron (MLP). The depthwise sepa-
rable convolution block consisted of four different components placed in the following
order: (1× 1Conv) → (BN) → (ReLU/h-swish) → (3× 3Conv) → (BN) → (ReLU/h-
swish) → (1× 1Conv) → (BN) → (ReLU/h-swish). Two types of activation functions
were used interchangeably in the model; these were the rectified linear unit (ReLU) and
a function recently proposed by [57,58] named h-swish. The h-swish activation function
integrates the ReLU6 activation function to reduce the computational resources on small
devices and replace the sigmoid function [57], as defined in Equation (21).
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h-swish(x) = x · σ(x)

σ(x) =
ReLU6(x + 3)

6

(21)

where σ(x) represents the piecewise linear hard analog function.
Furthermore, we placed a 1× 1 point-wise convolutional layer before the final classi-

fication layer to perform feature extraction, where the output of this layer was flattened
to form the feature vectors. The extracted feature vectors were fed to the feature selection
algorithm to select the most relevant features and reduce the representation space. We fine-
tuned the model on an NVIDIA GTX 1080 GPU with the following settings: 100 epochs,
batch size of 32, learning rate of 1× 10−4 the RMSprop optimizer, and a dropout of 0.38.
Data augmentation was used to increase the size of the training data and prevent overfitting
with the following data transformations: image resizing, random vertical flip, random crop,
random horizontal flip, and color jitter. In addition, the batch normalization (BN) process
was used on each mini-batch to standardize the data and overcome overfitting.

4.2. Feature-Selection-Based AHA-AO

In this section, the main stages of the proposed FS approach are introduced, as shown
in Figure 4. In the method developed here, which is named AHA-AO, the aim is to enhance
the exploitation ability of AHA by using the AO method.

Figure 4. The architecture of the proposed AHA-AO for the FS problem.

The AHA-AO begins by splitting the input dataset into training and testing sets,
which represent 70% and 30% of the instances of input data. Then the initial population X
is constructed by using the following formula:

Xj = rand× (UB− LB) + LB, j = 1, 2, ..., N, i = 1, 2, ..., D (22)

where N shows the number of solutions. D stands for the dimension of each Xj. LB and
UB refer to the boundaries of the search domain.
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Thereafter, the Boolean form of Xi is obtained using Equation (23).

BXij =

{
1 i f Xij > 0.5
0 otherwise

(23)

Thereafter, the fitness value of Xi is computed according to its binary form BXi and
the training set by using the following formula:

Fiti = λ× γi + (1− λ)×
(
|BXi|
Dim

)
, (24)

In Equation (24), ( |BXi |
Dim ) stands for the ratio of features selected from the training set.

γi denotes the error classification value obtained using KNN (at K = 5). In this study, the
KNN algorithm is applied because it is simple and easy to implement, and it is considered
more stable than other classification techniques that have few parameters. The parameter λ

represents the weight value for ( |BXi |
Dim ) and γi.

The next step is the allocation of the best fitness value Fitb and its corresponding
solution Xb. After that, the current population X is updated in two stages; during the
first stage (i.e., exploration), the operators of the AHA are used to update X, as shown in
Equations (14)–(18). However, during the second stage (i.e., exploitation), the integration
of the operators of the AHA and AO is applied to update X. This is achieved using
replacing the exploitation phase of the AHA with the exploitation phase of AO. Therefore,
the main weakness of the AHA results from this phase. This process is formulated using
the Equations (4)–(9).

If the conditions have been met, the next step in the AHA-AO is to return Xnew.
Alternatively, the upgrading steps are repeated.

Finally, the dimension of the testing set is reduced according to the binary form of Xb,
and the KNN algorithm is used to assess the quality of this dimension reduction process
that is achieved by using the AHA-AO technique.

5. Experimental Results

In this section, we evaluate the performance of our proposed feature selection op-
timization technique (AHA-AO) and compare it with five of the most effective feature
selection techniques, namely, PSO, MFO, WOA, AO, and AHA. The parameter settings of
each one of these methods are given in Table 1. In addition, each of these methods was run
25 times in order to have fair comparison, since they depend on random parameters.

Table 1. Parameter settings of the methods.

Algorithm Parameter Settings

PSO VMax = 6, WMax = 0.9, WMin = 0.2

MFO a = 2, b = 1,

WOA a = 2 to 0, a2 = −1 to −2

AO α = 0.1, δ = 0.1, ω = 0.005

AHA r ∈ [0, 1]

AHA-AO α = 0.1, δ = 0.1, ω = 0.005, r ∈ [0, 1]

To verify the superiority of the performance of the AHA-AO in comparison with
that of the other algorithms, we utilized four image datasets, namely, the ISIC-2016, PH2,
Chest-XRay, and Blood-Cell datasets. A description of each dataset is given in Table 2, and
examples are given in Figure 5.
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Table 2. Description of the datasets.

Dataset Name Class Training Data Test Data Total Images

ISIC-2016 Malignant 173 75 248
Benign 727 304 1031

Ph2 Common Nevus 68 12 80
Atypical Nevus 68 12 80

Melanoma 34 6 40

Chest-XRay Normal 1349 234 1583
Pneumonia 3883 390 4273

Blood-Cell Neutrophil 2499 624 3123
Monocyte 2478 620 3098

Lymphocyte 2483 620 3103
Eosinophil 2497 623 3120

Figure 5. Samples of medical images for the classification task from the four selected databases.

Raw images were used to train the CNN models and the extracted deep features were
used by the FS optimizer to select the best features from these deep features. The number
of deep features from the Chest-XRay and ISIC-2016 datasets was 128 features, and 512
deep features from the PH2 and Blood-cell datasets were utilized. Optimized feature sets
were used to train the three classification algorithms of DT, LDA, and SVM. For a fair
comparison, we used the default settings for the three classifiers in all experiments. In total,
we conducted five experiments with different datasets and different algorithms to test the
proposed algorithm. Some datasets were used to build binary classifiers, such as ISIC-2016
and Chest-XRay; the PH2 dataset was used to build a three-class classifier, and Blood-Cell
was used to build a four-class classifier.
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5.1. Performance Measures

Six metrics were used to evaluate the performance of the tuned classifiers (i.e., accuracy,
balanced accuracy (BA), F1-score, recall, precision, and time in seconds). The balanced
accuracy and F1-score are used to report the accuracy of results for imbalanced datasets, as
introduced in Equations (26) and (29), respectively. The average results of these metrics are
reported in the following section. The whole optimizer had an extra metric (i.e., features)
that reported the number of features selected by a specific optimizer.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

BalancedAccuracy(BA) =
1
2
×
[ TP

TP+FN + TN
FP+TN

]
(26)

Recall =
TP

TP + FN
(27)

Precision =
TP

TP + FP
(28)

F1-Score =
2× Precision× Recall

Precision + Recall
(29)

5.2. Experiment 1: Results without the Feature Selection Optimization

We added an additional feature selection optimization step after the deep feature
learning process. The n features extracted from the CNN model were used by an FS
optimizer that selected the best m < n features. This step was tested by using many
well-known optimizers, plus the proposed one. The resulting feature set was expected
to improve the performance of the classifiers, even though it added some extra time for
the machine learning pipeline to finish the whole processing. To measure how much the
additional FS optimization step improved the performance, we evaluated the deep learning
model without using a feature selection optimizer and reported the results. Table 3 shows
the performance of directly training regular machine learning classifiers based on the deep
features extracted from the CNN model. In other words, Table 3 illustrates the results of
the three classifiers (DT, LDA, SVM) for each dataset without using any FS algorithms.
The top row shows the results for the ISIC-2016 dataset, the second row shows the results
for the PH2 dataset, the third row shows the results for the Chest-XRay dataset, and the
last row shows the results for the Blood-Cell dataset. For the ISIC-2016 dataset, the SVM
achieved the best results compared to DT and LDA (accuracy = 0.8602, recall = 0.8601,
precision = 0.8546, and F1-score = 0.8567). For the PH2 dataset, the SVM still achieved the
best results (accuracy = 0.9571, recall = 0.9571, precision = 0.9574, and F1-score = 0.957).
The SVM achieved the best results for the Chest-XRay dataset as well (accuracy = 0.8718,
recall = 0.8717, precision = 0.8906, and F1-score = 0.865); it also did for the Blood-Cell
dataset (accuracy = 0.8846, recall = 0.8845, precision = 0.905, and F1-score = 0.8865). In the
next subsections, we describe the use of an extra step after the deep learning process to
select the best list of features from the deep features extracted by the CNN module.
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Table 3. Classification results without using feature selection optimization.

Dataset Classifier Accuracy Recall Precision F1-Score

ISIC-2016

DT 0.8259 0.8258 0.8192 0.8221
LDA 0.8602 0.8601 0.8518 0.8541
SVM 0.8602 0.8601 0.8546 0.8567

PH2

DT 0.9179 0.9178 0.9206 0.9177
LDA 0.9536 0.9535 0.955 0.9535
SVM 0.9571 0.9571 0.9574 0.9572

Chest-XRay

DT 0.8253 0.8253 0.8384 0.8156
LDA 0.8478 0.8477 0.8739 0.8373
SVM 0.8718 0.8717 0.8906 0.8651

Blood-Cell

DT 0.8786 0.8785 0.9001 0.8809
LDA 0.8834 0.8833 0.9041 0.8853
SVM 0.8846 0.8845 0.905 0.8865

5.3. Experiment 2: Results Based on the ISIC-2016 Dataset

The results of all optimizers based on the ISIC-2016 dataset are reported in Table 4.
The optimizers selected from 128 features that were extracted using the DL algorithm.
The resulting feature sets were used to train the binary classifiers for the difference be-
tween the malignant and benign classes. The AHA-AO selected the lowest number of
features compared to the other optimizers. PSO, MFO, WOA, AO, AHA, and AHA-AO
selected 86 (67.2%), 58 (45.3%), 56 (43.8%), 53 (41.4%), 60 (46.9%), and 52 (40.6%) of the
raw features, respectively. Based on the best 52 features, the AHA-AO achieved the best
results based on the SVM classifier (i.e., accuracy = 0.8734, BA = 0.7654, F1-score = 0.8683,
recall = 0.8734, and precision = 0.8667). In addition, the AHA-AO achieved superior results
with the LDA (accuracy = 0.8628, BA = 0.7588, F1-score = 0.859, recall = 0.8628, and preci-
sion = 0.8569) and DT (accuracy = 0.8179, BA = 0.7208, F1-score = 0.8193, recall = 0.8179,
and precision = 0.8207) compared to the results when using the LDA and DT with other
optimizers. The models with the extra FS step achieved better performance than the deep
learning models without this step; see Table 3. Because the AHA-AO used the smallest
feature set, the time complexity of the model was better than that of the other optimizers for
all classifiers (i.e., 0.0398 with DT, 0.0349 with LDA, and 0.1132 with SVM). As noted, the
LDA classifier had the shortest time of 0.0349 compared to the times taken by all of the other
classifiers. The SVM had the shortest time of 0.1132 compared with all other SVM classifiers
with the other optimizers. Note that all of the performance metrics were consistent, so an
algorithm with the highest accuracy would have the highest values for the other metrics.
DT is a simple classifier. Thus, it was not able to fit a dataset well. As a result, it achieved
the lowest performance with all feature selection optimizers. The best-performing DT was
based on the AHA optimizer’s feature set (BA = 0.8285), and the worst DT was based on
the AO feature set (BA = 0.7942). Using the BA as a metric for comparison, DT achieved
a performance of 0.6991, 0.6641, 0.6791, 0.6859, 0.7274, and 0.7208 with PSO, MFO, WOA,
AO, AHA, and AHA-AO, respectively. The SVM achieved the best results with the PSO
feature set (accuracy = 0.8628, BA = 0.7488, F1-score = 0.8573, recall = 0.8628, and preci-
sion = 0.8551). However, compared to the DT and LDA, it took the longest time of 0.155.
Similarly, the SVM achieved the best results with the MFO optimizer (accuracy = 0.8628,
BA = 0.7437, F1-score = 0.8564, recall = 0.8628, and precision = 0.8544). However, it had the
longest time of 0.1232. Based on the WOA feature set, the LDA had the best results (accu-
racy = 0.8602, BA = 0.7571, F1-score = 0.8567, recall = 0.8602, and precision = 0.8546), and
it had the shortest time of 0.0379. The LDA achieved the best results with the AO feature set
(accuracy = 0.8628, BA = 0.7387, F1-score = 0.8554, recall = 0.8628, and precision = 0.8538),
and, again, it had the best time of 0.0373. With the AHA optimizer, the LDA achieved the
highest results (accuracy = 0.8681, BA = 0.747, F1-score = 0.861, recall = 0.8681, and preci-
sion = 0.8598), and it was the fast classier (i.e., time = 0.038). As a result, the SVM worked
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better with the features selected by the AHA-AO, PSO, and MFO; the LDA achieved the
best results with the WOA, AO, and AHA. To conclude, the proposed AHA-AO achieved
the best results with the three classifiers. This means that the AHA-AO selected the best
features that captured the majority of the variance in the ISIC-2016 dataset.

Table 4. Classification results of each feature selection optimization algorithm on the ISIC-2016
dataset (bold refers to best value).

Alg. Model Accuracy BA F1-Score Recall Precision Time No. of
Features

PSO

DT 0.8153 0.6991 0.8134 0.8153 0.8117 0.0449

86
LDA 0.8549 0.7438 0.8504 0.8549 0.8479 0.0463
SVM 0.8628 0.7488 0.8573 0.8628 0.8551 0.155

MFO

DT 0.7995 0.6641 0.7951 0.7995 0.7916 0.044

58
LDA 0.8575 0.7455 0.8527 0.8575 0.8503 0.0511
SVM 0.8628 0.7437 0.8564 0.8628 0.8544 0.1232

WOA

DT 0.8074 0.6791 0.8038 0.8074 0.8008 0.0395

56
LDA 0.8602 0.7571 0.8567 0.8602 0.8546 0.0379
SVM 0.8549 0.7438 0.8504 0.8549 0.8479 0.148

AO

DT 0.7942 0.6859 0.7962 0.7942 0.7984 0.039

53
LDA 0.8628 0.7387 0.8554 0.8628 0.8538 0.0373
SVM 0.8575 0.7304 0.8499 0.8575 0.8478 0.1196

AHA

DT 0.8285 0.7274 0.8281 0.8285 0.8276 0.0492

60
LDA 0.8681 0.747 0.861 0.8681 0.8598 0.038
SVM 0.8628 0.7337 0.8544 0.8628 0.8533 0.1225

AHA-AO

DT 0.8179 0.7208 0.8193 0.8179 0.8207 0.0398

52
LDA 0.8628 0.7588 0.859 0.8628 0.8569 0.0349
SVM 0.8734 0.7654 0.8683 0.8734 0.8667 0.1132

5.4. Experiment 3: Results Based on the PH2 Dataset

The results of all optimizers based on the ISIC-2016 dataset are reported in Table 5.
In this experiment, the feature selection optimizers selected from 512 features that were
learned by the DL module. The feature optimization techniques selected different numbers
of features (i.e., 107 (20.9%), 141 (27.5%), 159 (31.1%), 221 (43.2%), 222 (43.4%), and 326
(63.7%) with AHA-AO, AHA, AO, WOA, MFO, and PSO, respectively). The selected
feature sets were used to train classifiers for a three-class classification problem to separate
the common nevus, atypical nevus, and melanoma classes. Even though this was a more
complex classification task than that in Experiment 1, most classifiers achieved better
results in Experiment 2 than in Experiment 1. As can be clearly noticed in Table 5, the
proposed AHA-AO selected the smallest feature set (107 features), and it achieved the
best results with the SVM classifier (accuracy = 0.975, BA = 0.9792, F1-score = 0.975, recall
= 0.975, and precision = 0.975) compared to the results of other classifiers tuned with all
other optimizers. The resulting models with the extra FS step achieved better performance
than the deep learning models without this step; see Table 3. We noticed a huge difference
between the AHA-AO and the other optimizers regarding the time. All classifiers took less
time compared to their corresponding classifiers with other optimizers. In other words,
the AHA-AO-based SVM had the shortest time (0.0523) compared with all other SVM
classifiers. The AHA-AO-based LDA had the shortest time (0.0937) compared with all
other LDA algorithms, and the DT had the shortest time (0.0482) compared to all other
classifiers. The DT showed high results compared with those of other DT algorithms
(accuracy = 0.9107, BA = 0.9048, F1-score = 0.9115, recall = 0.9107, and precision = 0.9192);
in addition, it achieved the lowest time complexity (0.0482). Next to the AHA-AO, the
AHA selected 141 features, and AO selected 159 features. The AHA achieved the highest
results when using the LDA classifier (accuracy = 0.9643, BA = 0.9702, F1-score = 0.9643,
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recall = 0.9643, and precision = 0.9643), but this classifier took a longer time (0.1095) than DT
and SVM did. With the AO feature set, the SVM showed a higher performance compared to
that of DT and LDA (accuracy = 0.9643, BA = 0.9702, F1-score = 0.9643, recall = 0.9643, and
precision = 0.9643). It is clear that the proposed hybrid algorithm improved the performance
of both AHA and AO by either selecting fewer features or achieving better results. Of all
of the optimizers, the best time complexity was achieved by the AHA-AO using the DT
classifier (0.0482). In addition, the SVM based on the AHA-AO features had the best time
complexity compared to that of all other SVM classifiers, and the LDA had the best time
complexity compared to that of all other LDA classifiers. As a result, the proposed algorithm
improved both the performance and the speed of all algorithms. The WOA feature set
achieved the best results when used to train both the LDA and SVM (accuracy = 0.9679,
BA = 0.9732, F1-score = 0.9679, recall = 0.9679, and precision = 0.9681), but the LDA took a
longer time for training (0.1445) than the SVM did (0.0961). The MFO feature set achieved
similar results to those of the WOA when using the SVM classifier (accuracy = 0.9643, BA =
0.9702, F1-score = 0.9643, recall = 0.9643, and precision = 0.9644), but the MFO-based SVM
classifier was faster than the WOA-based SVM classifier. Although PSO selected the largest
number of features, it showed similar results to those of the MFO and WOA optimizers
when using both the LDA and the SVM classifier (accuracy = 0.9643, BA = 0.9702, F1-score
= 0.9643, recall = 0.9643, and precision = 0.9648). We noticed that having a large number of
features did not help the classifiers to fit the data well and achieve good results. This meant
that many of the features selected using PSO, MFO, WOA, AO, and AHA added much
noise in the resulting dataset without adding any variance in the data. On the other hand,
the proposed optimizer selected the best 107 features, which added sufficient variance in
the data, with the least noise. As a result, the resulting feature set achieved the highest
results and, at the same time, the shortest time. As observed in Experiment 1, the DT
classifier achieved the worst results with all optimizers. Its best results were achieved by
using the AHA feature set (accuracy = 0.925, BA = 0.9256, F1-score = 0.9251, recall = 0.925,
and precision = 0.9293), and it took the shortest time compared to the LDA and SVM
based on the AHA features. In addition, DT achieved the worst results when using the
WOA feature set (accuracy = 0.8786, BA = 0.869, F1-score = 0.8794, recall = 0.8786, and
precision = 0.8991). The LDA achieved the best results with the WOA optimizer’s features
(accuracy = 0.9679, BA = 0.9732, F1-score = 0.9679, recall = 0.9679, and precision = 0.9681)
and the worst results with the AHA-AO feature set (accuracy = 0.9571, BA = 0.9643,
F1-score = 0.9571, recall = 0.9571, and precision = 0.9573). The SVM achieved the best
results with the proposed AHA-AO algorithm and the worst results with the AHA features
(accuracy = 0.9607, BA = 0.9673, F1-score = 0.9607, recall = 0.9607, and precision = 0.961).

To sum up, Experiment 2 showed the superiority of the proposed AHA-AO optimizer
compared to the other five optimizers with regard to either the performance or the time.
The AHA-AO selected the best feature set (107 features) that had the least noise and
the highest variance. Building a classifier based on this feature set is expected to be
more preferable in real environments because it will be more interpretable, faster, and
more accurate.
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Table 5. Classification results of each feature selection optimization algorithm on the PH2 dataset
(bold refers to best value).

Alg. Model Accuracy BA F1-Score Recall Precision Time No. of
Features

PSO

DT 0.8893 0.9048 0.89 0.8893 0.9037 0.1484

326
LDA 0.9643 0.9702 0.9643 0.9643 0.9648 0.2309
SVM 0.9643 0.9702 0.9643 0.9643 0.9644 0.1442

MFO

DT 0.9179 0.9167 0.9185 0.9179 0.9245 0.0813

222
LDA 0.9607 0.9673 0.9607 0.9607 0.9614 0.1393
SVM 0.9643 0.9702 0.9643 0.9643 0.9644 0.0947

WOA

DT 0.8786 0.869 0.8794 0.8786 0.8991 0.0927

221
LDA 0.9679 0.9732 0.9679 0.9679 0.9681 0.1445
SVM 0.9679 0.9732 0.9679 0.9679 0.9679 0.0961

AO

DT 0.9179 0.9226 0.9179 0.9179 0.9261 0.0708

159
LDA 0.9607 0.9673 0.9607 0.9607 0.961 0.1135
SVM 0.9643 0.9702 0.9643 0.9643 0.9643 0.0764

AHA

DT 0.925 0.9256 0.9251 0.925 0.9293 0.0602

141
LDA 0.9643 0.9702 0.9643 0.9643 0.9643 0.1095
SVM 0.9607 0.9673 0.9607 0.9607 0.961 0.0773

AHA-AO

DT 0.9107 0.9048 0.9115 0.9107 0.9192 0.0482

107
LDA 0.9571 0.9643 0.9571 0.9571 0.9573 0.0937
SVM 0.975 0.9792 0.975 0.975 0.975 0.0523

5.5. Experiment 4: Results Based on the Chest-XRay Dataset

This experiment was based on the Chest-XRay dataset in order to train binary clas-
sifiers to differentiate between normal patients and those with pneumonia. The results
are reported in Table 6. The resulting models with the extra FS step achieved better per-
formance than the deep learning models without this step; see Table 3. Regarding the
number of selected features, PSO selected the smallest number of features (79) compared
to the other optimizers (MFO (91), WOA (98), AO (91), AHA (99), and AHA-AO (96)).
Because it was based on the smallest number of features, the PSO-based LDA achieved
the shortest time (0.1306). We discovered that the proposed AHA-AO optimizer achieved
the best results compared to all other optimizers. These results were achieved by the SVM
classifier (accuracy = 0.8686, BA = 0.8274, F1-score = 0.8617, recall = 0.8686, and precision =
0.8869). However, the SVM had a long processing time (0.6623). The fastest AHA-AO-based
classifier was the LDA (i.e., time = 0.1783); even though it was not the best compared to the
other optimizers’ classifiers, this time was comparable to the best time of the PSO-based
LDA (0.1306). The slowest AHA-AO-based classifier was the DT (0.5981), but it had a
comparable time to that of the other DT classifiers with other FS optimizers. As a result,
even though they did not achieve the best learning time, the AHA-AO-based classifiers
achieved a better-than-average time. The slowest classifier in Table 6 was the SVM based
on the MFO optimizer (0.7427). PSO selected the smallest number of features, but its
performance suffered for all classifiers. The POS-based DT had the worst performance
compared to all other classifiers (accuracy = 0.8013, BA = 0.7487, F1-score = 0.7875, recall =
0.8013, and precision = 0.8177). The PSO-based LDA classifier had the best time (0.1306),
but its other performance metrics were not high (accuracy = 0.8446, BA = 0.7953, F1-score
= 0.8339, recall = 0.8446, and precision = 0.87). We noticed that the SVM achieved the
best results compared to those of DT and LDA for all optimizers (accuracy = 0.8478, BA =
0.8004, F1-score = 0.838, recall = 0.8478, and precision = 0.8706 for PSO, accuracy = 0.8574,
BA = 0.8132, F1-score = 0.8492, recall = 0.8574, and precision = 0.8774 for MFO, accuracy
= 0.8558, BA = 0.8103, F1-score = 0.847, recall = 0.8558, and precision = 0.8778 for WOA,
accuracy = 0.8558, BA = 0.8111, F1-score = 0.8473, recall = 0.8558, and precision = 0.8763 for
AO, and accuracy = 0.8542, BA = 0.8081, F1-score = 0.8451, recall = 0.8542, and precision
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= 0.8767 for AHA). In this experiment, we noticed that selecting more features was not
correlated with an enhancement in the performance, but it sometimes increased the time.
For example, the PSO-based DT classifier was based on 79 features and achieved a BA of
0.7487; the MFO-based DT used 91 features and achieved a BA of 0.7641; the WOA-based
DT used 98 features and achieved a BA of 0.7778; the AO-based DT achieved a BA of 0.7722
with only 91 features; the AHA-based DT achieved a lower BA of 0.756 with 99 features.
Similar behaviors were followed with the LDA and SVM classifiers with all optimizers. As
a result, it was not a matter of the number of features, but it depended on the quality of
the selected features. PSO selected only 79 features, but they achieved bad results; AHA
selected 99 features, but they still achieved bad results. On the other hand, the AHA-AO
optimizer selected 96 features, which was less than the AHO and WOA, but achieved the
highest results.

Table 6. Classification results of each feature selection optimization algorithm on the Chest-
XRay dataset (bold refers to best value).

Alg. Model Accuracy BA F1-Score Recall Precision Time No. of
Features

PSO

DT 0.8013 0.7487 0.7875 0.8013 0.8177 0.3909

79
LDA 0.8446 0.7953 0.8339 0.8446 0.87 0.1306
SVM 0.8478 0.8004 0.838 0.8478 0.8706 0.7182

MFO

DT 0.8141 0.7641 0.802 0.8141 0.8307 0.4391

91
LDA 0.8462 0.7983 0.8361 0.8462 0.8694 0.1405
SVM 0.8574 0.8132 0.8492 0.8574 0.8774 0.7427

WOA

DT 0.8237 0.7778 0.8137 0.8237 0.8371 0.4166

98
LDA 0.8397 0.788 0.8278 0.8397 0.8685 0.1709
SVM 0.8558 0.8103 0.847 0.8558 0.8778 0.6557

AO

DT 0.8189 0.7722 0.8085 0.8189 0.8321 0.419

91
LDA 0.8446 0.7944 0.8336 0.8446 0.8718 0.1464
SVM 0.8558 0.8111 0.8473 0.8558 0.8763 0.6305

AHA

DT 0.8061 0.756 0.7937 0.8061 0.8204 0.5743

99
LDA 0.851 0.8038 0.8414 0.851 0.8744 0.1867
SVM 0.8542 0.8081 0.8451 0.8542 0.8767 0.6737

AHA-AO

DT 0.8269 0.7812 0.8171 0.8269 0.8409 0.5981

96
LDA 0.8494 0.8017 0.8396 0.8494 0.8733 0.1783
SVM 0.8686 0.8274 0.8617 0.8686 0.8869 0.6623

5.6. Experiment 5: Results Based on the Blood-Cell Dataset

In this experiment, we evaluated the performance of the proposed FS optimizer in
comparison with the other list of optimizers based on the Blood-Cell dataset. The results of
this experiment are shown in Table 7. The resulting models with the extra FS step achieved
better performance than the deep learning models without this step; see Table 3. As can
be noticed in Table 7, the list of selected features from the proposed AHA-AO optimizer
succeeded in achieving the best results in terms of both accuracy and time. In addition, the
AHA-AO selected the smallest number of features compared to the other optimizers (347
(67.8%), 225 (43.9%), 226 (44.1%), 125 (24.1%), 132 (25.8%), 65 (12.7%)). The AHA-AO-based
SVM achieved the best results compared to those of the other optimizers’ classifiers (accu-
racy = 0.8862, BA = 0.8862, F1-score = 0.8878, recall = 0.8862, and precision = 0.9053), and
its time was the best compared to those of the other SVM classifiers with other optimizers
(0.2579, 0.53, 0.6661, 0.7249, 0.7944, and 0.8885 for AHA-AO, AHA, AO, WOA, MFO, and
PSO). Regarding the time, the AHA-AO-based LDA achieved the best time compared
to all other classifiers (0.1887), and its performance was comparable to that of the best-
performing LDA of PSO (accuracy = 0.8826, BA = 0.8825, F1-score = 0.8844, recall = 0.8826,
and precision = 0.903). The AHA-AO-based DT had the shortest time compared to the
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other DT classifiers for all optimizers (0.4053). As a result, the features selected by the
proposed AHA-AO model achieved the best performance with the SVM classifier and the
best time when using the LDA. In addition, the AHA-AO-based SVM and DT classifiers
achieved the best times compared to the SVMs and DTs of other optimizers, respectively. It
can be noticed that the SVM classifier achieved better results compared to the DT and LDA
for all optimizers. With the PSO features, the SVM had a performance with accuracy =
0.8858, BA = 0.8858, F1-score = 0.8877, recall = 0.8858, and precision = 0.906. With the MFO
features, the SVM had accuracy = 0.8838, BA = 0.8838, F1-score = 0.8859, recall = 0.8838,
and precision = 0.9055. With the WOA features, the SVM had accuracy = 0.8838, BA =
0.8838, F1-score = 0.8856, recall = 0.8838, and precision = 0.9041. With the AO features, the
SVM achieved a performance of accuracy = 0.8838, BA = 0.8838, F1-score = 0.886, recall
= 0.8838, and precision = 0.9058. With the AHA features, the SVM achieved results of
accuracy = 0.8846, BA = 0.8846, F1-score = 0.8863, recall = 0.8846, and precision = 0.9035.
The DT classifier achieved the worst results with all optimizers, except with AO, with which
it achieved a result better than that of LDA (accuracy = 0.8806, BA = 0.8805, F1-score =
0.8822, recall = 0.8806, and precision = 0.898). To sum up, the proposed AHA-AO optimizer
succeeded in selecting the best feature set of 65 features out of 512 deep features. The total
number of features was smaller than the numbers of features selected by other optimizers.
However, these features achieved the best results and the best time compared to those of
the other optimizers. These results prove the superiority of the proposed algorithm and
how it enhances the results of its base components of AO and AHA.

Table 7. Classification results of each feature selection optimization algorithm on the Blood-Cell
dataset (bold refers to best value).

Alg. Model Accuracy BA F1-Score Recall Precision Time No. of
Features

PSO

DT 0.8733 0.8733 0.8764 0.8733 0.8978 2.0821

347
LDA 0.8838 0.8837 0.8859 0.8838 0.9053 1.2637
SVM 0.8858 0.8858 0.8877 0.8858 0.906 0.8885

MFO

DT 0.881 0.8809 0.8824 0.881 0.8976 1.5234

225
LDA 0.8814 0.8813 0.8834 0.8814 0.9031 0.738
SVM 0.8838 0.8838 0.8859 0.8838 0.9055 0.7944

WOA

DT 0.8778 0.8777 0.88 0.8778 0.9005 1.4109

226
LDA 0.8806 0.8805 0.8828 0.8806 0.9027 0.7313
SVM 0.8838 0.8838 0.8856 0.8838 0.9041 0.7249

AO

DT 0.8806 0.8805 0.8822 0.8806 0.898 0.8553

125
LDA 0.879 0.8789 0.8811 0.879 0.9014 0.5041
SVM 0.8838 0.8838 0.886 0.8838 0.9058 0.6661

AHA

DT 0.8721 0.8721 0.8753 0.8721 0.8977 0.8567

132
LDA 0.8818 0.8817 0.884 0.8818 0.9037 0.4571
SVM 0.8846 0.8846 0.8863 0.8846 0.9035 0.53

AHA-AO

DT 0.8749 0.8749 0.877 0.8749 0.8956 0.4053

65
LDA 0.8826 0.8825 0.8844 0.8826 0.903 0.1887
SVM 0.8862 0.8862 0.8878 0.8862 0.9053 0.2579

5.7. Comparison with Studies in the Literature

In this study, we proposed a new feature selection optimization technique and an-
alyzed its performance with four different datasets. The proposed optimizer helped all
machine learning models to improve their performance and their speed. As shown in
Figure 6, the proposed optimizer selected the smallest number of features from all datasets,
except for the Chest dataset. These features were the most informative features because
they supported the machine learning algorithms in achieving the best results, as shown in
Figure 7. In addition, the trained classifiers were faster based on the selected features of
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the AHA-AO algorithm, as shown in Figure 8. To sum up, using the proposed AHA-AO
as a a feature selection technique in the machine learning pipeline has been proven to (1)
allow the selection of the best feature set, (2) improve the performance of the model, and
(3) speed up the learning process. This section compares the proposed approach with the
state-of-the-art medical image classification techniques in the literature.

Figure 6. Numbers of selected features of different optimizers for all datasets.

Figure 7. Comparison among the best classifiers with every optimizer and the four datasets: (A) for
the ISIC-2016 dataset, (B) for the PH2 dataset, (C) for the Chest dataset, and (D) for the Blood dataset.
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Figure 8. Comparison of the time taken by different optimizers on the four datasets.

Table 8 shows the results of some important methods. For a fair comparison, we
concentrate on studies that used the same datasets. For the ISIC-2016 dataset, the following
advanced skin cancer identification methods were compared: a method based on segre-
gation and then validation [34]; a method that relied on feature fusion [32]; a method
correlated with Fisher coding and deep residual networks [39]; a multi-CNN interactive
learning model [40]; an ensemble method [59]; an integration of a Fisher vector and CNN
fusion [41]. Yu et al. [34] proposed a fully convolutional residual network (FCRN) for
segmentation, and further enhanced it by adding a multi-scale contextual information
strategy to expand its capabilities. Furthermore, for a categorization task, they combined
the FCRN with several deep residual networks. Ge et al. [32] discovered a technique for
combining two types of features of a deep CNN, namely, global and local features. To
retrieve these features, they used a deep residual network and a bilinear pooling approach.
Yu et al. [39] introduced a technique based on the ResNet model and a local descriptor
encoding mechanism. To train the pre-trained ResNet, they employed a huge natural
ImageNet dataset. Next, based on Fisher vector (FV) encoding, these local deep descriptors
were combined to create a global image representation. Lastly, using an SVM, the FV repre-
sentations were employed to diagnose melanoma. Zhang et al. [40] discovered a technique
for jointly running deep CNNs and allowing them to train on one another. Each pair of
neural networks’ learnt image representations was combined as the entry of a network
that had a fully connected design that forecasted if the pair of image data belonged to the
same category. Therefore, if one of the neural networks correctly classified, a fault made
by the other caused a synergic mistake, which required an additional effort to modify the
network. This network can be constructed from start to finish using classification faults
from each network. Yu et al. [41] suggested a cross-net-based combination of several fully
convolutional networks to detect skin lesions on its own. They used multiple convolu-
tional networks to select semantic regions and local colors and patterns in skin images. In
addition, they used FV to encode the selected features.
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Table 8. Comparison with the state-of-the-art methods. The best results for each item are labeled
in bold (bold refers to best value).

Dataset Model Accuracy (%) Year Ref.

ISIC-2016

CUMED 85.50 2016 [34]

BL-CNN 85.00 2017 [32]

DCNN-FV 86.81 2018 [39]

MC-CNN 86.30 2019 [40]

MFA 86.81 2020 [41]

AHA-AO 87.30 present Our

PH2

ANN 92.50 2017 [60]

Kernel Sparse 93.50 2019 [61]

DenseNet201 +
SVM 92.00 2020 [62]

DenseNet201 +
KNN 93.16 2020 [63]

ResNet50 + NB 95.40 2021 [64]

AHA-AO 97.50 present Our

Chest-XRay

DCGAN 84.19 2018 [65]

DenseNet121 86.80 2021 [66]

AHA-AO 86.90 present Our

Blood-Cell

CNN + SVM 85.00 2013 [67]

CNN 87.08 2017 [68]

CNN +
Augmentation 87.00 2019 [69]

AHA-AO 88.60 present Our

For the PH2 dataset, the following technologies for melanoma diagnosis were evalu-
ated together. One involved an artificial neural network, as introduced in [60]; in addition,
they developed a decision-support system. Sparse kernel models for representing feature
data in a high-dimensional feature vector were proposed by [61]. They developed a method
for segmenting and classifying lesion images based on sparse representations. They also
employed discriminative sparse kernel coding to simultaneously learn a kernel-based
dictionary and a linear classifier. According to [62], U-Net can be used to automatically
detect malignant tumors. To tackle the limitation of overfitting, U-Net was employed with a
spatial dropout, and several augmentation techniques were added to the training examples
to ensure more samples. As part of their IoT framework, the authors of [63] employed
transfer learning and CNNs. They used convolutional neural networks (CNNs) as resource
extractors. They tested the effects of combining twelve CNN architectures with seven
distinct classification models. A hierarchical architecture founded on two-dimensional
pixels in the images and ResNet was introduced in [64] for advanced deep learning. They
improved the quality of dermoscopy images by combining locally and globally enhanced
images. Later, using TL, a ResNet approach was developed for these mapped images and
learned features. The retrieved features were modified using the grasshopper optimization
approach, and the Naive Bayes classification algorithm was used.

The Chest-XRay dataset was used to compare various advanced methods for the
detection of pneumonia. In [65], the authors examined the use of generative adversarial
networks (GANs) to enrich a dataset by producing chest X-ray data samples. GANs
offer a method for learning about the underlying architectures of medical images, which
can subsequently be used to make high-quality and realistic samples. In [66], the authors
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proposed an automatic transfer-learning method based on CNNs using concepts pre-trained
with DenseNet121.

In order to identify and count basic blood cells in the Blood-Cell dataset, the following
identification and counting methods were used. As a result of the CNN’s solution, SVM-
based classifiers were able to classify data, as proposed in [67]. In addition, a granularity
feature and SVM were used in [68]. In order to automate the entire procedure, CNNs were
presented as a deep learning method in [69].

The bottom line is that we can remove superfluous features from high-dimensional
medical image representations obtained by convolutional neural networks (CNNs) by
using our strategy. However, this method’s drawback is its complexity in terms of both
time and memory. Our next steps will be to decrease the complexity and enhance the
performance of the suggested technique. In addition, other augmentation techniques can
be studied in the future to optimize the effectiveness of our model.

6. Limitations of the Study and Future Work

The proposed method was performed through a set of steps that began with extract-
ing the features from medical images. This extraction process was achieved by using
MobileNetV3. MobileNetV3 was fine-tuned on the medical image datasets to learn more
complex and meaningful representations, and it helped to extract relevant feature repre-
sentations. Then, the extracted features were fed to the feature selection phase, which
depended on the improvement of the behavior of the new metaheuristic algorithm called
the Artificial Hummingbird Algorithm. This improvement was performed by using Aquila
Optimization to enhance the diversity of agents during the search process. This led to an
enhancement in the convergence rate towards the optimal subset of relevant features. Due
to the rapid calculation of the threshold parameters and the high reliability of the output,
the AHA-AO achieved a high convergence rate, indicating that it prevented trapping in
optimal solutions and was well balanced between the exploitation and exploration phases.

Our study proposes an advanced feature selection optimization technique that im-
proves the performance of deep learning and machine learning models. However, there are
still some limitations for the proposed algorithm. The most important problems are the
time and the memory. In future work, we plan on lowering the complexity and enhancing
the performance of the suggested model. In addition, we will introduce an AHA-AO based
on a multi-objective FS technique for higher-dimensional space with a low number of
instances to enhance the classification results by reducing the number of features, allowing
us to use more accurate classifiers. Furthermore, the implementation of hyper-heuristic
techniques in FS could be a significant research area.

7. Conclusions

Given the great significance of medical image recognition and the particular problem
of small medical image datasets, the focus of this work is on how a CNN model (i.e., Mo-
bileNetV3) could be implemented with feature selection optimization for small datasets, and
the performance was evaluated. Initially, the features of the small medical image datasets
were obtained by using a MobileNetV3 model, which is considered the most recent transfer
learning model, and the MobileNetV3 method is compared with other high-efficiency meth-
ods. The proposed approach was improved in order to create more relevant feature vector
representations that are beneficial to the medical field by using medical imaging datasets.
Moreover, a unique metaheuristic technique based on selected features combined the Artificial
Hummingbird Algorithm (AHA) with Aquila Optimization (AO) to select the relevant fea-
tures. To check whether our approach worked well, it was tried on the following datasets: the
ISIC-2016, PH2, Chest-XRay, and Blood-Cell datasets. The findings revealed that the proposed
optimization strategy outperformed existing feature selection techniques that are currently in
use. Furthermore, tests with several other cutting-edge medical image classification systems
revealed that the proposed approach is a good procedure. Future studies will examine the
growing availability of medical data and their use in medical care. The combination of differ-
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ent categorization algorithms is also a fascinating research issue, as it might help practitioners
enhance the performance of the present methods.
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