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Abstract: Spatial modulation (SM) is a multiple-input multiple-output (MIMO) technique that
achieves a MIMO capacity by conveying information through antenna indices, while keeping the
transmitter as simple as that of a single-input system. Quadrature SM (QSM) expands the spatial
dimension of the SM into in-phase and quadrature dimensions, which are used to transmit the
real and imaginary parts of a signal symbol, respectively. A parallel QSM (PQSM) was recently
proposed to achieve more gain in the spectral efficiency. In PQSM, transmit antennas are split
into parallel groups, where QSM is performed independently in each group using the same signal
symbol. In this paper, we analytically model the asymptotic pairwise error probability of the PQSM.
Accordingly, the constellation design for the PQSM is formulated as an optimization problem of
the sum of multivariate functions. We provide the proposed constellations for several values of
constellation size, number of transmit antennas, and number of receive antennas. The simulation
results show that the proposed constellation outperforms the phase-shift keying (PSK) constellation
by more than 10 dB and outperforms the quadrature-amplitude modulation (QAM) schemes by
approximately 5 dB for large constellations and number of transmit antennas.

Keywords: spatial modulation (SM); quadrature SM (QSM); parallel QSM (PQSM); constellation
design; pairwise error probability

1. Introduction

Multiple-input multiple-output (MIMO) techniques, among others, strive to fulfill the ever
increasing demands for high data rates in the future communication systems. These data rates
requirements for the 5G, Beyond-5G, and 6G are 1 Gbps, 100 Gbps, and 1 Tbps, respectively [1].
Index modulation (IM) is a category of relatively new MIMO techniques that fulfills these high data
requirements by allowing the transmission of information using the conventional signal symbols and
the indices of given resources of the communication systems [2,3]. These indices represent antennas [4]
or a combination of antennas [5], spreading codes [6], polarities [7], sub-carriers [8], or a combination of
sub-carriers with multi-mode modulation [9,10], rotation angles [11], and virtual parallel channels [12],
among others.

With the emergence of massive MIMO [13], spatial modulation (SM), in which signal symbols
and the indices of the antennas used for transmission carry information, became a potential candidate
for increasing the system capacity. An advantage of the SM system is that it requires a single
radio-frequency (RF) chain. The SM is extended to the receiver side, where the index of a designated
receive antenna carries information [14,15]. Macro-diversity precoding aided SM, where two base
stations simultaneously communicate with a single user is proposed in Reference [16]. Quadrature SM
(QSM) is an extension of the conventional SM that transmits a single signal symbol at each channel use,
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where the real and imaginary part is transmitted from the in-phase and quadrature spatial dimension,
respectively [17]. The hardware implementation of the QSM using a single RF chain was investigated
in Reference [18]. A precoding-aided QSM was proposed in Reference [19], where the indices of the
designated receive antennas carry information. In transmit and receive SM, the system requires a large
number of antennas to achieve high spectral efficiency. In addition to the cost and space requirements
of installing more physical antennas, the channel estimation overhead is increased.

Building upon the SM, several systems that strike a trade-off between hardware requirements,
i.e., the number of RF chains, and the achieved capacity were proposed. SM with multiple active
antennas (MA-SM) transmits independent signal symbols from the activated antennas, leading
to improvement in the system spectral efficiency [20]. The performance of the MA-SM is further
investigated in Reference [21]. A special case of using two RF chains to simultaneously transmit two
signal symbols at each channel use was proposed in Reference [22,23]. In this scenario, the first symbol
is transmitted from a constellation set, and the second is transmitted from a rotated constellation.
The rotation angle is optimized to reduce the error rate. To avoid transmitting the two signal symbols
from the same antenna, an improved system equips the transmitter with an additional antenna that is
used to transmit the second signal symbol only when the two symbols are supposed to be transmitted
from the same antenna in the conventional system [24]. The constellation design of this system is
investigated in Reference [25]. Another approach used to avoid the symbols’ overlapping and to
reduce the number of transmit antennas by using antenna combinations is proposed in Reference [26].
Improved QSM (IQSM) exploits the in-phase and quadrature spatial dimensions to transmit the real
and imaginary parts of two signal symbols, respectively, using combinations of two antennas [27].
The authors in Reference [28] investigate the constellation design of the IQSM and propose double
QSM (DQSM) and parallel IQSM (PIQSM) that reduce the number of transmit antennas of the IQSM
without additional hardware requirements. In addition to the information carried by the indices of the
antennas used for transmission, the enhanced SM (ESM) conveys information through the constellation
used to transmit either one or two signal symbols per channel use [29].

Another category of extensions split the set of transmit antennas into groups and perform any of
the above SM techniques independently in each group. In Reference [30–32], SM is applied in each
group, and the number of antennas per group is optimized. In Reference [33,34], QSM is performed
in each group to increase the spectral efficiency of the system. Both systems achieve higher spectral
efficiency compared to both SM and QSM, at the cost of requiring as many RF chains as the number
of groups.

Another approach to improve the spectral efficiency and to reduce the number of antennas splits
the available set of antennas into groups, where SM or QSM is performed in each antenna group using
the same signal symbol. As such, the resulting transmitter design abides by the SM principal advantage
of using a single RF chain while increasing the spectral efficiency at no cost at the transmitter side.
The authors in Reference [35,36] proposed to perform the conventional SM in each group. This work
was extended to the massive MIMO case in Reference [37]. The constellation design for this system
with an arbitrary number of antenna groups is investigated in Reference [38]. To increase the spectral
efficiency, an antenna grouping combined with QSM was recently proposed in Reference [39,40]. In the
sequel, the systems in Reference [35,36,39,40] are referred to as parallel SM (PSM) and parallel QSM
(PQSM), respectively.

Contributions: The contributions of this paper are as follows:

• The analytical upper-bound of the codeword pairwise error probability is derived for the PQSM
with two and four groups.

• The derived upper-bound is formulated as a weighted sum of functions. We propose an
improved constellation for the PQSM for several system configurations, where the search process
is formulated as a multi-objective optimization problem. The obtained constellation reduces the
asymptotic error performance, and it outperforms the conventional modulation schemes by more
than 5 dB for given system configurations.
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The rest of the paper is organized as follows: In Section2, we present the system model and briefly
describe several related works. In Section 3, the analytic performance of the PQSM is provided with
QSM as a special case. The constellation design for the PQSM is introduced in Section4. The simulation
results are presented in Section 5, and the paper’s conclusions are drawn in Section 6.

2. System Model and Related Works

2.1. System Model

The assumed system consists of a transmitter equipped with Nt transmit antennas and a receiver
equipped with Nr receive antennas. The number of transmit antennas is assumed to be a power of
two; N = log2(Nt), where N is an integer. The signal symbols are drawn from the modulation set A in
which the size is M = 2q, where q is the number of bits per signal symbol. The elements of the channel
matrix H ∈ CNr×Nt are assumed to be independent and identically distributed (i.i.d.) and follow
a cyclically symmetric Gaussian distribution with mean and variance of zero and one, respectively.
Only the receiver has a perfect knowledge of the channel matrix H. The noise is assumed to be additive
white Gaussian with mean and variance of zero and σ2

n , respectively.

2.2. Quadrature Spatial Modulation

In QSM, the real and imaginary part of a signal symbol is transmitted from the in-phase and
quadrature spatial dimension, respectively. The spectral efficiency of the QSM is K = (q + 2N) bits per
channel use (bpcu). Let sl = sl< + jsl= be a signal symbol, the transmitted vector is given by:

s = en< sl< + jen= sl= , (1)

where ei is the ith column of the Nt identity matrix, and n< and n= are the indices of the antennas
from which the real and imaginary parts of sl are, respectively, transmitted. Accordingly, the received
signal vector is given by:

y = Hs + n =

{
hn< sl< + jhn= sl= + n if n< 6= n=
hisl + n if i = n< = n=,

(2)

where n is the additive white Gaussian noise. Figure 1a depicts a simplified block diagram of the
conventional QSM.

Let the noiseless received vector be g = hn< sl< + jhn= sl= . The receiver employs the
maximum-likelihood (ML) principle to recover l, n< and n= as follows:

(l̂, n̂<, n̂=) = arg min
l=1,··· ,M

n< ,n==1,··· ,Nt

‖y− g‖2

= arg min
l=1,··· ,M

n< ,n==1,··· ,Nt

‖g‖2 − 2<{yHg}, (3)

where <{·} is the real part operator.

2.3. Parallel Quadrature Spatial Modulation

In PQSM, the available Nt transmit antennas are divided into G disjoint groups, each of size
nT = Nt/G, where G is an integer and 2 ≤ G ≤ Nt/2. These groups are defined as follows:

{i}nT
1 , {i}2nT

nT+1, · · · , {i}Nt
(G−1)nT+1. (4)
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The conventional QSM is performed in each of these parallel groups using the same signal symbol
sl . The received vector is accordingly given by:

y =
sl<√

G

G

∑
i=1

hn<i
+ j

sl=√
G

G

∑
i=1

hn=i
+ n, (5)

where n<i and n=i are the indices of the antennas used for transmitting the real and imaginary parts of
sl in the ith antenna group. Figure 1b depicts a simplified block diagram of the PQSM with G antenna
groups. The normalization factor 1/

√
G is present in (5) to set the transmit power per signal symbol

to unity.
The receiver employs the ML principle to recover the signal symbol and the vector of antenna

indices as follows:

(l̂, n̂<, n̂=) = arg min
l,n< ,n=

‖y− g‖2

= arg min
l,n< ,n=

‖g‖2 − 2<{yHg}, (6)

where

n< =
{

n<1 , n<2 , · · · , n<G

}
n= =

{
n=1 , n=2 , · · · , n=G

}
. (7)

Note that the search in (3) is performed to find the index of the signal index l and the antenna
indices n< and n= from which the real and imaginary parts of the signal symbol are transmitted. In (6),
in addition to the index of the signal symbol, the ML detector searches for the sets n< and n=, where
n<i and n=i are the indices of the antennas from which the real and imaginary parts of the signal
symbol are transmitted in the i-th antenna group.

Accordingly, the spectral efficiency of the PQSM is given by:

Kp = q + 2G log2 (nT) . (8)

Based on the above description, the spatial spectral efficiency, i.e., 2G log2 (nT), is a linear function
in the number of antenna groups. A maximum spatial spectral efficiency can be achieved for nT = 2
and G = Nt/2. In this case, the spatial spectral efficiency is equal to 2G = Nt bpcu. The PQSM is
explained through the following example.

Example: Let Nt = 8, q = 2, G = 2. Assume that the codeword to be transmitted at a given
channel use is

m = [0 0 1 0 1 1 0 1 0 0] .

The codeword is divided into the following (G + 1) parts.

p0 = [0 0] , p1 = [ 1 1 0 1] , p2 = [0 0 1 0] ,

where the length of p0 is q bits and that of pi, for i = 1, · · · , G, is 2 log2(nT). The first two bits
p0 = [0 0] modulate a signal symbol s0 from a conventional modulation set. Let s0 = 1√

2
− j 1√

2
.

The eight transmit antennas are split into two groups that contain the indices of the member antennas:
{1, 2, 3, 4} and {5, 6, 7, 8}. Assuming the first antenna group, the sequence p1 is divided into two
equal parts, where the first part modulates the index of the antenna from which the real part of s0 is
transmitted; the second part modulates the index of the antenna from which the imaginary part is
transmitted. This yields n<1 = 2 and n=1 = 4. The conventional QSM is also performed using the same
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signal symbol s0 in the second group, yielding n<2 = 7 and n=2 = 5. Mathematically, the transmitted
symbols from the parallel groups are given by:

s1 =
1√
2

e2 − j
1√
2

e4

s2 =
1√
2

e7 − j
1√
2

e5.

(9)

Finally, the transmitted vector is given by s = [sT
1 sT

2 ]
T/
√

2 and the received vector is

y = (h2 + h7)
1
2
− j (h4 + h5)

1
2
+ n. (10)

The ML principle in (7) is applied to recover the transmitted symbols.

bits

S/P

modulation
p0

spatial 

indices Nt

1

2. . .

bits

S/P

modulation
p0

spatial 

indices nT

1

2. . .

spatial 

indices

. . .

p1

pG

. . . .

…

Nt

(G-1)nT+1

(G-1)nT+2

(b)

(a)

p1

Figure 1. Simplified block diagram of (a) the conventional Quadrature Spacial Modulation (QSM) and
(b) the parallel QSM (PQSM) with G antenna groups.

3. Performance Analysis

3.1. Performance of the Quadrature Spatial Modulation

Let g = hn< sl< + jhn= sl= and g′ = hn′<
sl′<

+ jhn′=
sl′=

be two received noiseless codewords, the
pairwise error probability is then given by:

Pr[g→ g′] = Q
(√

ρ

2
‖g− g′‖2

)
, (11)
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where ρ = 1/σ2
n is the signal-to-noise ratio (SNR) and Q(·) is the Gaussian tail function, or simply the

Q-function. The upper bound on the codeword pairwise error probability is obtained by summing
over all possible pairs g and g′ as follows:

Pr[e|H] ≤
Nt

∑
n<=1

Nt

∑
n==1

Nt

∑
n′<=1

Nt

∑
n′==1

M

∑
l=1

M

∑
l′=1

Q
(√

ρ

2
‖hn< sl< + jhn= sl= − hn′<

sl′<
− jhn′=

sl′=
‖2
)

. (12)

The union bound on the pairwise error probability is obtained by taking the expectation of both
sides with respect to H [41,42]. We further simplify the asymptotic pairwise error probability as a
weighted sum of multi-variate functions as follows [43]:

Pr[e] ≈
(

2Nr − 1
Nr

)
ρ−Nr

M

4

∑
i=1

fiΩi, (13)

where f1 = (Nt − 1)2, f2 = f3 = (Nt − 1) and f4 = 1, and

Ω1 =
M

∑
l,l′=1

Λ−Nr
1 =

M

∑
l,l′=1

[
s2

l<
+ s2

l′<
+ s2

l=
+ s2

l′=

]−Nr
if n< 6= n′< and n= 6= n′=

Ω2 =
M

∑
l,l′=1

Λ−Nr
2 =

M

∑
l,l′=1

[(
sl< − sl′<

)2
+ s2

l=
+ s2

l′=

]−Nr

if n< = n′< and n= 6= n′=

Ω3 =
M

∑
l,l′=1

Λ−Nr
3 =

M

∑
l,l′=1

[
s2

l<
+ s2

l′<
+
(

sl= − sl′=

)2
]−Nr

if n< 6= n′< and n= = n′=

Ω4 =
M

∑
l,l′=1
l 6=l′

Λ−Nr
4 =

M

∑
l,l′=1
l 6=l′

[(
sl< − sl′<

)2
+
(

sl= − sl′=

)2
]−Nr

if n< = n′< and n= = n′=.

(14)

The setBqsm = {Λ1, Λ2, Λ3, Λ4} is, by definition, the squared Euclidean distance at the transmitter
between s and s′ in the QSM system. Because the leading coefficients in (13) are fixed for given values
of Nt, Nr and ρ, the optimal modulation set for the QSM minimizes the term ∑4

i=1 fiΩi. To minimize
Ω4, the Euclidean distance in the constellation should be maximized. M-ary quadrature-amplitude
modulation (M-QAM) is conventionally designed to maximize the Euclidean distance. On the other
hand, Ω1 does not depend on the distance among the signal symbols and is minimized if the power of
the signal symbols is maximized under a transmission power constraint. The values of fi imply that
at high values of Nt, Ω4 can be ignored. Accordingly, the M signal symbols are equally distributed
over the four quadrants, where in each quadrant, the M/4 symbols are centered at the location of a
standard QPSK symbol. In other words, the Euclidean distance among the symbols in each quadrant
has a limited effect on the error performance for large Nt. This conjecture is valid only for small values
of Nr. When Nr takes large values, Ω4 becomes non-negligible as can be understood from (14).

3.2. Performance of the Parallel Quadrature Spatial Modulation

Let

g = sl<

G

∑
i=1

hn<i
+ jsl=

G

∑
i=1

hn=i
,

g′ = sl′<

G

∑
i=1

hn′<i
+ jsl′=

G

∑
i=1

hn′=i
(15)
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be two received noiseless codewords. As in the case of the QSM, the pairwise error probability of
the PQSM is obtained by substituting g and g′ given in (15) into (11). Since the QSM is performed
in parallel using independent channel matrices, the set containing the different expressions of the
squared Euclidean distance between s and s′ in the case of PQSM is given by:

Bpqsm,G =
G⊕

i=1

Bqsm, (16)

where
⊕

denotes the Minkowski sum. We explain this process in light of the following example.
Example: Let Nt = 8, G = 2 and nT = Nt/G = 4 and B = {1, 3, 4, 6} with the frequencies

{9, 3, 3, 1}. Then,

2⊕
i=1

B = {2, 4, 5, 6, 7, 8, 9, 10, 12},

f = {81, 54, 54, 9, 36, 9, 6, 6, 1}, (17)

where ∑i fi = (nT)
2G = 256 in the above example. For G = 2, the maximum number of elements of

the Minkowski sum is equal to ∑nT
i=1 i = nT(nT + 1)/2 = 10.

The upper bound on the pairwise error probability of the PQSM is given by:

Pr[e] ≈
(

2Nr − 1
Nr

)
ρ−Nr

M

B

∑
i=1

fiΩi, (18)

where B is the number of unique Ω terms. Due to space limitations and the large size of Bpqsm,G for
large G, we restrict our analytic results to the case of G = 2 and G = 4.

For clarity, the expressions of Ωi are given as a function in Λ1 defined in (14). The nine Ω terms
for the case of G = 2 are given as follows:

Ω1 =
M

∑
l,l′=1

[2Λ1]
−Nr

if
(

n<1 6= n′<1
and n=1 6= n′=1

)
and

(
n<2 6= n′<2

and n=2 6= n′=2

)
Ω2 =

M

∑
l,l′=1

[Λ1 + Λ2]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 2sl< sl′<

]−Nr

if
(

n<1 6= n′<1
and n=1 6= n′=1

)
and

(
n<2 = n′<2

and n=2 6= n′=2

)
or
(

n<1 = n′<1
and n=1 6= n′=1

)
and

(
n<2 6= n′<2

and n=2 6= n′=2

)
Ω3 =

M

∑
l,l′=1

[Λ1 + Λ3]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 2sl= sl′=

]−Nr

if
(

n<1 6= n′<1
and n=1 6= n′=1

)
and

(
n<2 6= n′<2

and n=2 = n′=2

)
or
(

n<1 6= n′<1
and n=1 = n′=1

)
and

(
n<2 6= n′<2

and n=2 6= n′=2

)
Ω4 =

M

∑
l,l′=1

[Λ1 + Λ4]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 2sl< sl′<

− 2sl= sl′=

]−Nr

if
(

n<1 6= n′<1
and n=1 6= n′=1

)
and

(
n<2 = n′<2

and n=2 = n′=2

)
or
(

n<1 = n′<1
and n=1 = n′=1

)
and

(
n<2 6= n′<2

and n=2 6= n′=2

)
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or
(

n<1 = n′<1
and n=1 6= n′=1

)
and

(
n<2 6= n′<2

and n=2 = n′=2

)
or
(

n<1 6= n′<1
and n=1 = n′=1

)
and

(
n<2 = n′<2

and n=2 6= n′=2

)
Ω5 =

M

∑
l,l′=1

[2Λ2]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 4sl< sl′<

]−Nr

if
(

n<1 = n′<1
and n=1 6= n′=1

)
and

(
n<2 = n′<2

and n=2 6= n′=2

)
Ω6 =

M

∑
l,l′=1

[Λ2 + Λ4]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 4sl< sl′<

− 2sl< sl′<

]−Nr

if
(

n<1 = n′<1
and n=1 6= n′=1

)
and

(
n<2 = n′<2

and n=2 = n′=2

)
or
(

n<1 = n′<1
and n=1 = n′=1

)
and

(
n<2 = n′<2

and n=2 6= n′=2

)
Ω7 =

M

∑
l,l′=1

[2Λ3]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 4sl= sl′=

]−Nr

if
(

n<1 6= n′<1
and n=1 = n′=1

)
and

(
n<2 6= n′<2

and n=2 = n′=2

)
Ω8 =

M

∑
l,l′=1

[Λ3 + Λ4]
−Nr =

M

∑
l,l′=1

[
2Λ1 − 2sl< sl′<

− 4sl= sl′=

]−Nr

if
(

n<1 6= n′<1
and n=1 = n′=1

)
and

(
n<2 = n′<2

and n=2 = n′=2

)
or
(

n<1 = n′<1
and n=1 = n′=1

)
and

(
n<2 6= n′<2

and n=2 = n′=2

)
Ω9 =

M

∑
l,l′=1
l 6=l′

[2Λ4]
−Nr =

M

∑
l,l′=1
l 6=l′

[
2
(

sl< − sl′<

)2
+ 2

(
sl= − sl′=

)2
]−Nr

=
M

∑
l,l′=1
l 6=l′

[
2Λ1 − 4sl< sl′<

− 4sl= sl′=

]−Nr

if
(

n<1 = n′<1
and n=1 = n′=1

)
and

(
n<2 = n′<2

and n=2 = n′=2

)
. (19)

The frequencies of these terms are given by:

f1 = (nT − 1)4, f2 = f3 = 2(nT − 1)3,

f4 = 4(nT − 1)2, f5 = f7 = (nT − 1)2, (20)

f6 = f8 = 2(nT − 1), f9 = 1.

Note that Bpqsm,G =
⊕2

i=1 Bpqsm,G/2.
The elements of the set Bpqsm,4 and the corresponding frequencies in the case of G = 4 are

listed in Table 1. In Table 1, Λ1 = [s2
l<
+ s2

l′<
+ s2

l=
+ s2

l′=
] as defined in (14), Λ< = sl< s′l< , Λ= = sl= s′l= ,

and n = nT − 1. Any of the 25 Ω terms is obtained by substituting the corresponding Λ term in
∑M

l,l′=1 [Λ]−Nr . For instance,

Ω2 =
M

∑
l,l′=1

[4Λ1 − 2Λ< − 2Λ=]
−Nr . (21)
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Table 1. The Λ terms used to evaluated the pairwise error probability of the PQSM for G = 4.

Λ f

1 4Λ1 n8

2 4Λ1 − 2Λ< − 2Λ= 16n6

3 4Λ1 − 4Λ< − 4Λ= 36n4

4 4Λ1 − 6Λ< − 6Λ= 16n2

5 4Λ1 − 8Λ< − 8Λ= 1
6 4Λ1 − 2Λ< 4n7

7 4Λ1 − 2Λ= 4n7

8 4Λ1 − 4Λ< 6n6

9 4Λ1 − 4Λ= 6n6

10 4Λ1 − 4Λ< − 2Λ= 24n5

11 4Λ1 − 2Λ< − 4Λ= 24n5

12 4Λ1 − 6Λ< 4n5

13 4Λ1 − 6Λ= 4n5

14 4Λ1 − 6Λ< − 2Λ= 16n4

15 4Λ1 − 2Λ< − 6Λ= 16n4

16 4Λ1 − 6Λ< − 4Λ= 24n3

17 4Λ1 − 4Λ< − 6Λ= 24n3

18 4Λ1 − 8Λ< n4

19 4Λ1 − 8Λ= n4

20 4Λ1 − 8Λ< − 2Λ= 4n3

21 4Λ1 − 2Λ< − 8Λ= 4n3

22 4Λ1 − 8Λ< − 4Λ= 6n2

23 4Λ1 − 4Λ< − 8Λ= 6n2

24 4Λ1 − 8Λ< − 6Λ= 4n
25 4Λ1 − 6Λ< − 8Λ= 4n

The optimization of the modulation set for the PQSM is addressed in the next section.

4. Constellation Design for the PQSM

The constellation set is optimized to reduce the asymptotic pairwise error probability given in
(18). For a given Nt, Nr, M, and G, the optimization of the modulation set is given as follows:

arg min
−
√

M≤sl< ,sl=≤
√

M

(
B

∑
i=1

fiΩi

)
,

s.t.
M

∑
l=1

(
s2

l<
+ s2

l=

)
= M.

(22)

where B = 4, 9, and 25 in the PQSM with G = 1, 2, and 4, respectively. Obtaining an analytic
solution for the above optimization problem is difficult. Therefore, we used the optimization toolbox
of MATLAB to obtain the solution numerically. This optimization process does not depend on the
channel or noise realization and, therefore, can be done offline. We follow the conventional design
of constellation sets, where the signal symbols are equally distributed among the four Euclidean
space quadrants and are symmetric over the in-phase and quadrature axes. To avoid locating the
real or imaginary part of the signal symbol on the in-phase or quadrature axis, respectively, we set a
lower-bound value for the real and imaginary parts. We refer to this value by the positive number α.
Accordingly, the multi-objective optimization of (18) is simplified as follows:
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arg min
α≤sl< ,sl=≤

√
M

l=1,··· ,M/4

B

∑
i=1

fiΩi,

s.t.
M/4

∑
l=1
|sl |2 = M/4.

(23)

The value of α is set to 0.1 through simulations: Smaller values might reduce the Euclidean
distance among symbols located in different quadrants, and larger values might reduce the Euclidean
distance among signal symbols within each quadrant. Note that the obtained symbols by solving (23)
are located in the first quadrant, and the remaining 3/4M symbols are obtained following the rule of
symmetry over the in-phase and quadrature axes.

Figure 2 depicts the proposed constellation for M = 16, 64 and several values of nT and Nr.
The first row of sub-figures depict the proposed constellation for M = 16, Nr = 1 and several values
of nT , whereas the second row of sub-figures depict the proposed constellation for fixed M = 16 and
nT = 256, and several values of Nr. The third and fourth rows depict the proposed constellations for
the M = 64 and a variable number of transmit and receive antennas. Based on these results, we make
the following remarks.

• The nine Ω terms given in (19) can be split into three groups. The first group consists of Ω1.
To minimize this term, the energy of the symbols should be maximized under the transmission
power constraint; the average power per symbol is equal to one. Therefore, Ω1 is minimized if
all the symbols have an equal power of one. Based on the design constraint mentioned above,
where M/4 symbols are located in each of the four quadrants, the M/4 symbols will be located
at the location of a QPSK symbol. The term Λ1 is referred to as the energy-maximization term.
The second group consists of Ω9. To minimize this term, the Euclidean distance between the
signal symbols should be maximized. Under the transmission power constraint, this leads to a
constellation similar to the standard quadrature amplitude modulation (QAM) set. The term Λ4 is
referred to as the distance-maximization term. The third group consists of the remaining terms Ω2

to Ω8. These terms are combinations of the energy- and distance-maximization terms. The result
of the disjoint optimization of these terms strikes a trade-off between maximizing the energy of
the symbols and increasing the Euclidean distance among them. In light of (19), maximizing the
energy will reduce the Ω terms more than maximizing the distance among the symbols does.

• For a fixed and relatively small number of receive antennas Nr, the energy-maximization
term dominates the optimization process. This is supported by the tendency of the proposed
constellations depicted in the first and third rows of Figure 2: The symbols of the proposed
constellation are located at the location of the standard QPSK symbols.

• As Nr increases, Ω9 also increases as it is the reciprocal of the Euclidean distance between the
real parts and imaginary parts raised to a power of Nr. To reduce the pairwise error probability,
the Euclidean distance among the symbols should be increased. That is why the obtained
constellation for high Nr is a QAM-like modulation set. This is very clear in the case of M = 16,
and the Euclidean distance among the symbols in the obtained constellation increases for M = 64
for high Nr.

• Figure 3 depicts the proposed constellation for M = 16 and 64 with G = 4. The analysis given
above for G = 2 is still valid for G = 4. The only remarkable difference between the two scenarios
is that as G increases, the shape of the proposed constellation converges to the standard QPSK
more rapidly as a function of nT . This convergence tendency of the proposed constellation
as a function of nT is due to the low weight associated with the distance-maximizing term as
G increases.
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Figure 2. Optimal modulation set for the PQSM for several combinations of (M, nT , Nr) and G = 2.
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Figure 3. Optimal modulation set for the PQSM for several combinations of (M, nT , Nr) and G = 4.
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5. Simulation Results and Discussion

In this section, we assume that the channel coefficients are independent and follow a centered
circularly-symmetric complex Gaussian distribution with mean and variance of 0 and 1, respectively.
The channel state information is assumed to be known only at the receiver. For all the evaluated
systems, we assume that the receiver employs the maximum-likelihood principle to jointly recover
both the signal and spatial symbols.

Figure 4 depicts a comparison between the PQSM for G = 2, SM, GSM, and QSM systems.
The simulation results depicted in Figure 4a are obtained for fixed Nt = 8 and Nr = 4 and a variable
modulation order for different systems. The modulation order is set to guarantee an equal total spectral
efficiency of 10 bits/s/Hz for the four compared systems. The performance of the generalized SM
(GSM) is depicted using antenna combinations of length C = 2 and C = 4. At a target bit-error-rate
(BER) of 10−4, PQSM with G = 2 outperforms QSM, GSM with C = 4, GSM with C = 2, and SM
by approximately 4, 5, 6, and 7.5 dB, respectively. To evaluate the effect of Nr on the gain achieved
by the PQSM compared to the conventional systems, Figure 4b depicts the performance of the four
systems using the same parameters depicted in Figure 4a with Nr = 8. At a target BER of 10−4, PQSM
with G = 2 outperforms QSM, GSM with C = 4, GSM with C = 2, and SM by approximately 4.8,
6.5, 7.5, and 9.4 dB, respectively. Finally, the performances of PQSM, QSM and GSM for spectral
efficiencies of 12 and 16 bits/s/Hz are depicted in Figure 4c, where all systems use 16-QAM and
Nr = 4. The number of transmit antennas for each of the three systems is selected to unify the
achieved spectral efficiency. While the gap in the BER performance among the three systems for the
two scenarios is negligible, PQSM requires a small fraction of the number of antennas required by
the other two systems. For instance, PQSM requires 16 antennas, whereas QSM and GSM require 64
and 92 antennas, respectively, to achieve a spectral efficiency of 16 bits/s/Hz. These comparisons
reflect the superior performance of the PQSM and its suitability for future communication systems.
Accordingly, the evaluation of a dedicated design of the constellation set for the PQSM is analyzed
in the following. The analytical results of the PQSM for the different scenarios are also provided in
Figure 4. The analytical results are an upper-bound on the error performance for high SNR.
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Figure 4. Comparison among PQSM, QSM, generalized SM (GSM), and SM for the same spectral
efficiency: (a) Nt = 8, Nr = 4 and different modulation orders adjusted to achieve a fixed spectral
efficiency, (b) Nt = Nr = 8, and (c) spectral efficiency of 12 and 16 bits/s/Hz, Nr = 4, and different
values of Nt.



Entropy 2020, 22, 841 13 of 18

Figure 5 depicts a comparison of the performance of the PQSM using the conventional QAM and
PSK constellations versus the proposed constellation, for G = 2. Figure 5a shows the performance
of the PQSM for M = 16, Nr = 3, and Nt = 4, 8, 16, and 32. For Nt = 4, the proposed constellation
outperforms QAM and PSK by 1.8 and 4.3 dB, respectively. For Nt = 8, the proposed constellation
outperforms QAM and PSK by 2.3 and 4.0 dB, respectively. For Nt = 16, the proposed constellation
outperforms QAM and PSK by 2.8 and 2.7 dB, respectively. For Nt = 32, the proposed constellation
outperforms QAM and PSK by 3.1 and 1.6 dB, respectively. For small values of Nt, the proposed
constellation is similar to the conventional QAM set. Therefore, the performance gap between the
proposed constellation and that of QAM is relatively small. On the other hand, PSK constellation
has worse performance compared to QAM and the proposed constellation. As Nt becomes large,
the proposed constellation is more similar to PSK set, and the performance gap between the two
constellations is reduced. The performance of QAM constellation degrades for large values of Nt.
These results and analysis are consistent with the results depicted in Figure 2. Figure 5b depicts
the system’s performance for M = 64. At a target BER of 10−4, the performance of the proposed
constellation outperforms QAM and PSK sets by 3.5 and 10 dB, respectively, for Nt = 8. The gain
achieved by the proposed constellation increases for larger values of Nt.
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Figure 5. Simulation results of the the PQSM with M-ary quadrature-amplitude modulation (M-QAM),
M-ary Phase-Shift Keying (M-PSK) and the proposed constellations, and G = 2. (a) M = 16, Nr = 3,
and Nt = 4, 8, 16, and 32, (b) M = 64, Nr = 3, and Nt = 4, 8, 16, and 32, (c) M = 16, Nt = 16, and
Nr = 2, 4, and 8, (d) M = 64, Nt = 16, and Nr = 2, 4, and 8.
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Figure 5c,d depict the performance of the proposed constellation for M = 16 and M = 64,
respectively, for a fixed Nt and Nr = 2, 4, and 8. For Nr = 8 and M = 16, the proposed constellation
outperforms QAM and PSK by 3 and 7.4 dB, respectively. The performance gain achieved by the
proposed constellation over QAM and PSK increases to 4.5 and 13 dB, respectively, for M = 64.

Figure 6 depicts the performance of the PQSM for G = 4 and those of GSM and QSM. To achieve a
similar error performance and the same spectral efficiency, PQSM requires 16 antennas, while GSM and
QSM require 363 and 256 antennas, respectively. To reduce the number of transmit antennas in the case
of QSM, a high order modulation is required to achieve the same spectral efficiency. This comes at a
heavy cost in terms of the error performance. For instance, PQSM outperforms QSM by approximately
12 dB at a target BER of 10−3, when both systems use the same Nt = 16.

Finally, the performance of the proposed constellation is compared to those of the conventional
PSK and QAM for G = 4. In Figure 7a, the proposed constellation outperforms QAM and PSK by
3.5 and 6 dB, respectively, for M = 16. For a large value of Nt, the proposed constellation’s shape
is more similar to the PSK than QAM. This explains the performance of the three constellations at
Nt = 32 in Figure 7, which shows the performance for M = 64. At a target BER of 10−3, the proposed
constellation outperforms QAM and PSK by 4 and 11.5 dB, respectively, for Nt = 8. These results
demonstrate the merits of the proposed constellation.

Recently, most wide-band communication systems use orthogonal-frequency division
multiplexing (OFDM) as the radio technology due to its proven merits. Inspired by the works
in Reference [4,8,44], we would like investigate the performance of combining PQSM with OFDM in
SM-OFDM and index-modulation-OFDM (IM-OFDM) scenarios. While the combination of PQSM
and SM-OFDM is straightforward, the implementation of the PQSM on top of the IM-OFDM system
requires careful consideration and possible modifications to the PQSM technique.
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Figure 6. Simulation results comparison between GSM (C = 2), QSM, and PQSM for G = 4 for a
spectral efficiency of 18 bits/s/Hz.
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Figure 7. Simulation results of the the PQSM with M-QAM, M-PSK and the proposed constellations,
and G = 4. (a) M = 16, Nr = 4, and Nt = 8, 16, and 32, and (b) M = 64, Nr = 4, and Nt = 8, 16, and 32.

6. Conclusions

The PQSM is a recent technique that achieves high spectral efficiency through expanding the
spatial dimensions over which a single signal is transmitted. Conventionally, M-ary PSK or QAM
constellations are used to modulate the signal symbols. In this paper, we derived the asymptotic
pairwise error probability of the PQSM and formulated it as a sum of weighted multi-variate functions.
Exact analytical results of these functions are provided for two and four parallel groups. The search
for the optimal constellation is formulated as an optimization problem that reduces the asymptotic
pairwise error probability. We discussed the tendency of the shape of the proposed constellation
for an arbitrary number of parallel antenna groups. The simulation results show that the proposed
constellation achieves as high as 10 dB of SNR gain over the conventional modulation schemes.
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