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Abstract: Early diagnosis of diabetes mellitus (DM) is critical to prevent its serious complications.
An ensemble of classifiers is an effective way to enhance classification performance, which can be
used to diagnose complex diseases, such as DM. This paper proposes an ensemble framework to
diagnose DM by optimally employing multiple classifiers based on bagging and random subspace
techniques. The proposed framework combines seven of the most suitable and heterogeneous data
mining techniques, each with a separate set of suitable features. These techniques are k-nearest
neighbors, naïve Bayes, decision tree, support vector machine, fuzzy decision tree, artificial neural
network, and logistic regression. The framework is designed accurately by selecting, for every
sub-dataset, the most suitable feature set and the most accurate classifier. It was evaluated using
a real dataset collected from electronic health records of Mansura University Hospitals (Mansura,
Egypt). The resulting framework achieved 90% of accuracy, 90.2% of recall = 90.2%, and 94.9% of
precision. We evaluated and compared the proposed framework with many other classification
algorithms. An analysis of the results indicated that the proposed ensemble framework significantly
outperforms all other classifiers. It is a successful step towards constructing a personalized decision
support system, which could help physicians in daily clinical practice.

Keywords: diabetes mellitus; ensemble classifier; medical diagnosis; clinical decision support system

1. Introduction

Diabetes mellitus (DM) is a complex chronic disease [1]. It is estimated that in 2030 the incidence
of diabetes will be 39% higher than it was in 2000 [2]. In 2013, around 382 million adults worldwide
had DM, and it is predicted that there will be 592 million people with diabetes by 2035 [3]. DM is a
primary source of morbidity and mortality. It contributes to increasing the risk of heart disease by two
to four times [4]. The early detection and diagnosis of DM can help prevent and treat many complex
complications and comorbidities. DM has an asymptomatic nature, especially in the early stages. As a
result, a patient can have diabetes for 9 to 12 years before being diagnosed [5]. In most cases, the
patient is already also affected by other complications at the time of diagnosis.
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The massive volume of patient data collected from electronic health records (EHRs) makes an
analysis of such data by hand inadequate and inaccurate, even if done by experts [6]. Experts have
manually design algorithms based on their experience. These algorithms are increasingly proved
limited and to not have scalability capabilities [4,7]. In addition, experts depend on a conservative
identification strategy in algorithm design. Thus, they may fail to identify complex (e.g., borderline)
patients, and can miss potential cases. Accuracy carries important weight in the medical domain
because it concerns the lives of individuals [8]. Data mining prediction and classification techniques
can be used to automate the discovery of hidden and potentially useful patterns in the massive volume
of data [4]. Data mining can be defined as the process of discovering unknown patterns or relationships
by selecting, exploring, and modeling large amounts of data [9]. Its basis includes statistics, machine
learning, pattern recognition, database, and optimization techniques. It has a standard model, named
the cross-industry process for data mining (CRISP-DM).

Recently, many classification algorithms based on EHR data have been used to enhance the
detection of complex diseases, such as diabetes [7–12]. However, a few studies have used data mining
techniques to build prediction models for diabetes diagnosis using the complete patient profile [10].
Diabetes is a chronic disease, often with comorbidities at diagnosis, so the process of diagnosis and
management can include a mixture of experts from other fields, such as hepatology, nephrology, and
cardiology. Opinions play a vital role in this regard where the patient’s data are distributed in different
hospitals, which can contribute to the decision-making process. In addition, all past studies and “No
Free Lunch” theorems show that no single classifier can be considered optimal for all problems [8,10,13].
Therefore, it is hard to find a suitable single classifier. Moreover, a model generated for one community
may not apply to another [14]. Many studies have developed classification models using a risk-scoring
system [15]. However, there is no preferred DM risk score model. This is because the context of use,
the statistical properties, the trade-off between sensitivity and specificity, and the availability of data to
determine the type of used models. In addition, the false positive and false negative rates of many
models raise questions about their applicability in clinical practice [16].

An ensemble of classifiers can effectively improve classification accuracy [8,17]. An ensemble
method combines single classifier results and produces better performance than every single model [18].
Bagging, boosting, and stacking are the most common ensemble techniques [19]. Dietterich [20]
discussed the primary motivations for combining classifiers. The goal of this work is to employ a
multiple classifier system (MCS), or an ensemble classifier, to develop a prediction model to improve
the accuracy of DM detection. To achieve these goals, we vertically divided a high-dimensional
dataset of diabetes profiles into different sets according to medical expert opinions, diabetes clinical
practice guidelines (CPGs), and correlation techniques. We carefully followed feature engineering by
using representative features. Then, we trained multiple popular, diverse, and independent machine
learning models based on constructed features. The algorithms are both linear (logistic regression (LR))
and nonlinear—k-nearest neighbors (KNN), naïve Bayes (NB), fuzzy decision tree (FDT), artificial
neural network (ANN), decision tree (DT), and support vector machine (SVM). This means that
misclassifications do not coincide. The classifiers with the best performance for each sub-dataset are
combined in the proposed classification framework. This empirical evaluation of the paper is based on
a real dataset with a complete set of patient description features collected from the EHR system of
Mansura University Hospitals, Mansura, Egypt. The main contributions of this paper are summarized
as follows:

1. An efficient ensemble of heterogeneous classifiers is proposed based on extensive evaluations.
This ensemble comprises seven of the well-known techniques: KNN, NB, FDT, ANN, SVM, LR, and
DT. A set of preprocessing steps is performed to enhance the quality of the sub-datasets, including
feature selection, missing value imputation, normalization, codification, and discretization.
The framework was applied to DM diagnosis.
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2. The proposed framework used different base classifiers with varying lists of features. Each classifier
has been evaluated with every sub-dataset and with different feature selection technique. The best
algorithm is selected for every sub-dataset according to its performance.

3. The ensemble framework uses a combination of bagging and random subspace techniques,
with a weighted voting scheme based on F-measure other than accuracy, to prevent possibly
biased results.

4. The proposed classifier was evaluated by comparing its results with state-of-the-art individual
and ensemble classifiers to prove its superiority.

The rest of the paper is organized as follows: Section 2 discusses the current related work. Section 3
presents the dataset used and the algorithms. Section 4 describes the proposed heterogeneous ensemble
framework. Section 5 represents the results and a discussion. Finally, the conclusions and future work
are summarized in Section 6.

2. Related Work

Diagnosis of DM has been extensively studied under many data mining techniques [21–23].
The most suitable data mining subfield for disease diagnosis is classification [2]. A plethora of
techniques has been applied to data analytics in medical diagnosis, including single and ensemble
classifiers [2,8,24,25].

2.1. Single Classifiers

Many studies in the literature used single classifier techniques for diabetes [26–32]. For example,
Kavakiotis et al. [9] conducted a review of the data mining applications for diabetes. Patil et al. [21]
proposed a hybrid model to diagnose type 2 DM by using two algorithms, which are simple K-means
clustering to select class labels, and C4.5 to construct the classifier. The Pima Indians diabetes dataset
(PIDD) from the University of California, Irvine was used to building a model with 92.38% of accuracy.
Upadhyaya et al. [2] compared LR and ANN classifiers in diabetes identification problems. However,
simple statistical techniques like LR could not explain the complex relationship between the utilized
features and DM [24]. Sanakal and Jayakumari [22] designed a DM diagnosis model using nine
features and 768 cases. The model employed a fuzzy C-means clustering algorithm and provided
94.3% of accuracy. Rahman and Afroz [23] conducted a comparative study of DM techniques for
diabetes diagnosis, especially classification and clustering. Many tests were performed to measure the
performance of these algorithms. The results showed that the best algorithm was the J48 classifier in
the Waikato Environment for Knowledge Analysis (Weka) with 81.33% of accuracy. Varma et al. [33]
proposed a diabetes diagnosis by using DT technique based on fuzzy decision boundaries, which
achieved an accuracy of 75.8%. Polat et al. [34] suggested a diabetes classification system using
Generalized Discriminant Analysis and a least squares SVM, which reached an accuracy of 82.50%.
Beloufa and Chikh [35] proposed a fuzzy classifier using a modified artificial bee colony (ABC)
optimization technique to generate fuzzy rules for DM diagnosis that achieved an accuracy of 82.68%.
Chikh et al. [36] proposed a modified artificial immune recognition system by utilizing a fuzzy KNN
technique. Many rule-based classifiers have been proposed [37]. However, these algorithms failed
to produce balanced, optimal, and comprehensive rules [38]. Also, these algorithms were unable to
provide high prediction accuracy while balancing both sensitivity and specificity. In most cases, single
classifiers did not produce good performance. Their combination in an ensemble is likely to provide
better prediction by forming a pool of several classifiers [19,29].

2.2. Ensembles of Multiple Classifiers

Many studies asserted that classifier ensembles offer improved performance, compared with single
classifiers [26,39,40]. In addition, they can counteract choosing the worst classifier, especially with a
small training dataset. The ensemble of classifiers has been used for the DM domain [8,13,26,41–43].
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For instance, Zolfaghari [26] stacked an ANN and SVM using PIDD dataset. The accuracy was 88.04%,
which was better than the results from single classifiers. Junior et al. [44] proposed a data stream
ensemble classifier named Iterative Boosting Streaming ensemble (IBS), able to cope with classification
tasks in streaming data environments. Saleh et al. [45] proposed ensemble classifier for diabetic
retinopathy (DR) detection. They used fuzzy random forests (FRF) and dominance-based rough set
on SRJUH dataset. They achieved an accuracy of 77%. Nanni et al. [46] proposed an ensemble of
SVM base classifiers for diagnosis of Alzheimer’s disease. Nguyen et al. [47] heterogeneous ensemble
classifier combined with a fuzzy IF-THEN rule inference engine to capture the uncertainty in the
outputs of the base classifiers. Tama and Fitri [39] utilized the AdaBoost.M1 algorithm [48] to combine
SVM, C4.5, and NB. The experimental results showed that the accuracy of the SVM classifier is at
the top, followed by boosting. Ali et al. [40] utilized an ensemble of AdaBoost.M1 with a random
committee for DM diagnosis. The accuracy was 81% using a dataset of 18 attributes and 100 records
from a local hospital. Zhu et al. [13] proposed an improved DM diagnosis method by using an MCS
based on a dynamic weighted voting scheme, referred to as multiple factors weighted combination
(MFWC). The authors used two datasets, which are RSMH and PIDD, to compare the MCS with
five classification algorithms (SVM, NB, C4.5, LR, and ANN). MFWC outperformed all methods
on both datasets. Bashir et al. [42] proposed an HMV system, a three-layer ensemble framework
based on a majority voting technique, which avoided biased results due to unbalanced classes that
commonly exist in DM datasets. The technique was evaluated on two datasets, which are PIDD and
the Biostat Diabetes Dataset (BDD), and yielded accuracies of 93% and 77.08%, respectively. Bashir
and colleagues [8] proposed HM-BagMoov, enhanced bagging, and optimized weighting algorithm.
HM-BagMoov reached 77.21% and 93.07% accuracies for PIDD and BDD, respectively. The authors
claimed that these results were the highest for both datasets when compared with the state-of-the-art
techniques. El-Baz et al. [43] proposed two ensemble classifiers using ANN. These frameworks relied
upon two base classifiers: multilayer perceptron (MLP) and a cascade-forward back-propagation
network (CFBN). The first ensemble used 16 different MLPs with each base classifier having a different
number of hidden neurons and a varied number of training epochs. Majority voting was used to
combine the final class prediction of each classifier. The proposed classifier yielded an accuracy of
95.31% with PIDD. The second ensemble was constructed using identical settings, but CFBN was
employed as a base classifier, which achieved an accuracy of 96.88%.

This literature review indicates that DM classification models are a suitable alternative to traditional
clinical diagnosis. According to a literature review done by Kavakiotis et al. [9], the diabetes diagnosis
problem needs further in-depth exploration. Individual classifiers can provide better performance by
combining them in ensembles. However, all of the above ensemble studies have limitations. All the
existing studies selected sets of base classifiers but did not discuss why these specific classifiers were
selected. Recently, Tama and Rhee [41] proposed an ensemble learning technique for diabetes detection
by using eight decision tree classifiers. The authors failed to clarify the reasons for selecting a decision
tree over other classifiers. Most of the previous studies used homogeneous ensembles. To the best of
our knowledge, no study builds a classification system by combining the results of the most accurate
heterogeneous techniques to diagnose DM. In other words, for high-dimensional data, there are no
studies that can partition data vertically using some technique (such as correlation into different subsets)
that evaluates the most popular classifiers on these different subsets and that builds an ensemble using
the most accurate algorithms as base classifiers for each specific subset. In addition, most DM studies in
the data-mining field depend on public datasets, such as PIDD [49], which has no representative feature
sets. DM is a chronic disease. At the time of diagnosis, the patient could have other complications in
the heart, kidney, liver, etc. Collecting all these features provides a complete picture of the patient.
However, they cannot be used with a single classifier. All studies depended on a small number of
classifiers in their ensembles. Most studies did not examine the performance differences between the
ensemble classifier and its base classifiers. Creating a powerful ensemble requires many diverse base
classifiers, different training subsets, and various feature sets.
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To overcome the aforementioned limitations of diabetes diagnosis classifiers, this study proposes
a novel ensemble classifier. The novelty of this framework can be summarized in a set of points. First,
the study is based on a real dataset with a complete set of diabetes patients’ characteristics. This dataset
is medically divided into different feature sets, such as symptoms and others. Second, the framework is
based on a set of seven heterogeneous classifiers from different domains, such as statistical, structural,
probabilistic, fuzzy, and logical. Third, feature selection is based on two different techniques to select
the best feature set for every classifier. These base classifiers were evaluated on every subset, and the
best algorithm was selected for every dataset. Finally, these algorithms formed the ensemble, and
we used a weighted voting function to get the final decision based on the base classifiers’ F-measure.
The proposed approach is medically more intuitive, and it can be used to design diagnosis systems for
any other diseases. It takes a decision based on the medical importance level of different types of data.
Our technique handles the already existing problems in medical data, such as missing values, a large
number of features, and various data formats.

3. Materials and Methods

3.1. Dataset Description

The dataset was obtained from the hospitals of Mansoura University, Mansoura, Egypt, for the
period between January 2010 and August 2013. Domain experts collected all the features that can add
value in diabetes diagnosis. Sixty-seven patients were enrolled in this study, but seven control subjects
were excluded due to limited blood samples. Table 1 shows descriptions of features that are considered
in this study.

Table 1. Dataset descriptions, where data type is {N = Numerical, C = Categorical}.

Feature Type Feature Name Data
Type Normal Range UoM Min-Mean-Max Feature

No.

Demographics

Residence C {Urban, Rural} - - 1

Occupation C {NHW, HW, Non} - - 2

Gender C {Male, Female} - - 3

Age N 20–80 year 29–48–74 4

BMI N 18.5–25 kg/m2 20–33.117–45 5

Sugar lab tests

HbA1C N ≤ 5.7 % 5–6.373–7.4 6

2h PG N ≤ 139 mg/dl 165–202.733–235 7

FPG N ≤ 99 mg/dl 96–129.633–156 8

Hematological
profile

Prothrombin INR N 0–1 % 1–1.16–1.4 9

Red cell count N 4.2–5.4 106/cmm 3.8–5.194–5.88 10

Hbg N 12–16 g/dL 9.8-12.332-13.4 11

Hematocrit (PCV) N 37–47 vol% 31.1–35.215–36.8 12

MCV N 80–90 fl 26.8–71.908–76.4 13

MCH N 27–32 pg 3.3–25.47–29.4 14

MCHC N 30–37 % 1.8–35.465–41.7 15

Platelet count N 150–400 103/cmm 135–316.183–2000 16

White cell count N 4–11 103/cmm 6–8.055–9.2 17

Basophils N 0–1 % 0–1.013–5 18

Lymphocytes N 20–45 % 21.2–25.768–29 19

Monocytes N 2–10 % 1.7–2.942–4 20

Eosinophils N 1–4 % 1–1.897–3.4 21
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Table 1. Cont.

Feature Type Feature Name Data
Type Normal Range UoM Min-Mean-Max Feature

No.

Symptoms

Urination frequency C {normal, +, ++, +++} - - 22

Vision C {normal, +, ++, +++} - - 23

Thirst C {normal, +, ++, +++} - - 24

Hunger C {normal, +, ++, +++} - - 25

Fatigue C {normal, +, ++, +++} - - 26

Kidney
function lab

tests

Serum potassium N 3.5–5.3 mEq/L 2.4–3.767–4.3 27

Serum urea N 5–50 mg/dL 17–31.56–67 28

Serum uric acid N 3.0–7.0 mg/dL 3–4.237–7.9 29

Serum creatinine N 0.7–1.4 mg/dL 0.9–1.35–3.6 30

Serum sodium N 135–150 mEq/L 134–137.833–158 31

Lipid profile

LDL cholesterol N 0–130 mg/dL 50–94.917–170 32

Total cholesterol N 0–200 mg/dL 158–209.367–275 33

Triglycerides N 60–160 mg/dL 78–144.767–189 34

HDL cholesterol N 45–65 mg/dL 30–55.533–65 35

Tumor
markers

Ferritin C 28–397 ng/mL - 36

AFP serum C 0.5–5.5 IU/ml - 37

CA-125 C 1.9–16.3 U/mL - 38

Urine analysis

Chemical
examination

Protein C {normal, +, ++, +++} - - 39

Blood C {normal, +, ++, +++} - - 40

Bilirubin C {normal, +, ++, +++} - - 41

Glucose C {normal, +, ++, +++} - - 42

Ketones C {normal, +, ++, +++} - - 43

Uro-
bilinogen C {normal, +, ++, +++} - - 44

Microscopic
examination

Pus C {normal, +, ++, +++} - - 45

RBCs C {normal, +, ++, +++} - - 46

Crystals C {normal, +, ++, +++} - - 47

Liver function
tests

S. albumin N 3.5–5.0 g/dL 1.9–4.082–5.4 48

Total bilirubin N 0.0–1.0 mg/dL 0.8–1.317–3 49

Direct bilirubin N 0.0–0.3 mg/dL 0.3–0.533–1.6 50

SGOT (AST) N 0–40 U/L 35–54.567–165 51

SGPT (ALT) N 0–45 U/L 35–57.317–183 52

Alk. phosphatase N 64–306 U/L 170–214.2–360 53

γ GT N 7–32 U/L 18–35.833–98 54

Total protein N 6.0–8.7 g/dL 3.1–4.858–8.7 55

Diseases Patient disease C {yes, no} - Collection of
diseases 59

Diagnosis Diabetes diagnosis C {diabetes, no diabetes} - - 60

The independent or input variables are a list of 60 integrated patient characteristics, which are
five features of patient demographics, three features of sugar level tests, 13 features of hematological
profiles, five features of symptoms, five features of kidney function lab tests, five features of lipid
profiles, three features of tumor markers, nine features of urine analysis, eight features of liver function
lab tests, three features of female histories, and one feature for complications. Because DM is a chronic
disease with many probable complications at diagnosis, these features provide a complete picture of
the patient history and support the making of an accurate decision. A dependent variable (target,
class, or output variable) is a binary variable with two categories: 0 means no diabetes and 1 indicates
diabetes. The dataset was distributed into 53% (cases with diabetes) and 47% (controls). The dataset is
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balanced because the class feature divides the dataset approximately in half. Some features, such as
patient diseases, require a unification of terminology for medical terms. We used the Systematized
Nomenclature of Medicine—Clinical Terms (SNOMED CT) standard terminology to standardize and
unify these terms [50].

3.2. Base Classifier Algorithms

The proposed framework utilizes seven popular classification algorithms, which are DT, KNN,
SVM, NB, ANN, LR, and FDT. The selection was based on their ability to predict categorical features,
their research streams, and diversity (e.g., statistical, structural, probabilistic, fuzzy, or logical) [51].
These techniques have been used individually in many diabetes studies [4,14,49]. This selection helps
to reduce model bias and supports the comparative assessments of model performance. To attain
diversity in our ensemble model, these algorithms are entirely different. The classification process can
be defined as follows. Given a D = n× d training dataset, and a class label value yk in v =

{
y1, . . . , yk

}
associated with each of the n cases in D, i.e., D =

{{
X1, y1

}
,
{
X2, y2

}
, . . . ,

{
Xn, yk

}}
, and given that Xi

represents the d-dimensional tuples associated with classes yi. It creates a training model M able to
predict the class label of a d-dimensional record Ȳ < D. Mathematically, classifier M can be defined as a
function ( f ), which takes a case in the d dimensional search space X < D and assigns it a label value y;
M : f

(
X
)
→ y , where y ∈

{
y1, y2, . . . , yn

}
. The following subsections provide a brief discussion for the

utilized classifiers.

3.2.1. Decision Tree

DT is popular in the medical domain as a powerful classification algorithm [10]. A DT produces
a transparent tree structure that allows the decision maker to check and interpret the resulting
model. The DT can work with a large volume of data, and handle both continuous and categorical
features. The Iterative Dichotomiser 3 (ID3), C4.5, C5.0, classification and regression trees (CART), and
chi-squared automatic interaction detector (CHAID) are the most common DT algorithms. This paper
is based on the C4.5 algorithm. Tree building starts at the root node with the entire dataset split in a
top-down approach using the most suitable feature. This feature is removed from the splits followed
by recursive partitioning of the splits into smaller subsets. The feature that best partitions the samples
into distinct classes is based on specific measures, such as information gain, gain ratio, and Gini index.
Our study uses the most popular technique for information gain (Equation (1)), which is based on the
level of impurity or entropy. For feature A and a collection of examples S:

In f ormation Gain(S, A) = Entropy(S) −
∑

v∈Value(A)

|Sv|

|S|
Entropy(Sv) (1)

where Value(A) is the set of all possible values for attribute A, Sv = {s ∈ S|A{s} = v}, and Entropy(S) =
c∑

i=1
−pilog2pi, where c is the number of classes and pi is the proportion of S belonging to class i. At each

node, the DT chooses the feature with the highest information gain in order to split the dataset. To avoid
overfitting, the generated tree can be pruned to remove non-essential terminal branches without
affecting classification accuracy. The overall computational complexity of this algorithm is ODT

(
mn2

)
,

for n is the number of instances, and m is the number of features.

3.2.2. Support Vector Machine

SVM nonlinearly maps the training data to a higher dimensional space. It separates the different
classes of data by defining a separating hyperplane, i.e., a decision boundary. It has a good generalization
ability, robustness for high-dimensional data, and better performance than ANNs, especially for binary
classification [52]. On the other hand, SVM is very sensitive to uncertainties, and the high-dimensional
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space can lead to overfitting. SVM defines the hyperplane by using support vectors (training tuples on
the plane) and margins (represented by the support vectors), as shown in Figure 1.

Figure 1. The SVM classification with a hyperplane.

SVMs try to minimize classification errors by maximizing the margin between the separating
hyperplane and the datasets. A separating hyperplane can be written as:

W ×X + b = 0 (2)

where W = {w1, w2, . . . , wn} is a weight vector (n is the attribute number), and b is bias. For a dataset of
two features, i.e., X = (x1, x2) and b = w0, the hyperplanes in the figure define the margin based on
support vectors, and can be written mathematically as seen in Equations (3) and (4):

H1 : w0 + w1x1 + w2x2 ≥ 1 f or yi = +1 (3)

H2 : w0 + w1x1 + w2x2 ≤ 1 f or yi = −1 (4)

Any case that falls on or above H1 belongs to class +1, and any that fall on or below H2 belong
to class −1. The overall computational complexity of this algorithm is OSVM

(
n3

)
, for n is the number

of instances.

3.2.3. Naïve Bayes

NB is a statistical classifier based on Bayes’ theorem. It is based on the class
conditional–independence assumption, where the effect of an attribute value on a given class is
independent of the values of the other attributes. The NB technique operates as follows:

1. For training set D of cases and their associated class labels, each case is represented by a vector of
n-dimensional attributes, X = (x1, x2,. . . , xn) for n values of n features (A1, A2,. . . , An). Each case
can be classified as one of the m classes: (Ci, C2,. . . , Cm).

2. For a new case, X, NB predicts that X has the class having the highest a posteriori probability,
conditioned on X. In other words, the NB classifier predicts that case X belongs to a class Ci if
and only if P(Ci|X) in Equation (5) is the largest, and Ci is the maximum a posteriori hypothesis:

P(Ci|X) > P
(
C j

∣∣∣X)
f or 1 ≤ j ≤ m, j , i (5)

Based on Bayes’ theorem, P(Ci|X) is calculated with Equation (6):

P(Ci|X) =
P(X

∣∣∣Ci)P(Ci)

P(X)
(6)

3. Only P(X
∣∣∣Ci) needs to be optimized or maximized because P(X) has the same value for all

classes, and if the class prior probabilities are not known, then, it is usually assumed that all
classes have the same probability value, P(C1) = P(C2) = . . . = P(Cm).
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4. Datasets are usually of multiple attributes, so it would be computationally extremely expensive
to compute P(X

∣∣∣Ci) . Using the naive assumption of class conditional independence, P(X
∣∣∣Ci) is

calculated with Equation (7), and P(xk
∣∣∣Ci) is calculated according to the type of the feature:

P(X|Ci) =
n∏

k=1

P(xk|Ci) = P(x1|Ci) × P(x2|Ci) × . . .× P(xn|Ci) (7)

The overall computational complexity of this algorithm is ONB(mn), for n is the number of instances,
and m is the number of features.

3.2.4. Artificial Neural Network

An ANN is a mathematical formulation of the human neural architecture. It is organized in
layers with one input layer, one or more hidden layers, and one output layer. Neurons in one layer
are connected with each neuron in the next layer by weighted connections. The weight value wi j
is the strength of the link between the i-th neuron in a layer and the j-th neuron in the next layer.
The complexity of the model determines the number of layers and the number of neurons in each layer.
A general scheme for a three-layer network is shown in Figure 2.

Figure 2. Illustration of an MLP network.

The input layer’s neurons receive the input data (activation values) and pass them to the first
hidden layer’s neurons via weighted connections. These data are mathematically processed, and the
results are transferred to the neurons in the next layer. The network’s output is generated from the
neurons in the last layer. Neuron j in a hidden layer processes the incoming data (xi) in three steps:

(1) Calculate the weighted sum and add a bias term (θ j) according to Equation (8):

val j =
m∑

i=1

xi ×wi j + θ j ( j = 1, 2, . . . , n) (8)

(2) Transform val j through a suitable mathematical transfer function, such as unit step (threshold),
piecewise linear and Gaussian sigmoid, or sigmoid (given in Equation (9); and

(3) Transfer the result to neurons in the next layer until it reaches the output nodes (feed-forward):

f (x) =
1

1 + e−x (9)

The difference between predicted value and actual value (error) is propagated backward by
apportioning it to each node’s weight to modify it (feed-backward). This training process loops until
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the ANN reaches a state of equilibrium. For the final user, the network is a “black box” that receives an
input vector with m values and provides an output vector with n results. The learning process from a
series of examples is achieved by representing each case as the input vector Xim = (xi1, xi2, . . . , xim) and
output vector Yin = (yi1, yi2, . . . , yin). The training process tries to approximate function f between
the vectors Xim and Yin, i.e., Yin = f (Xin). This objective is reached by iteratively changing the values
of the connection weights (wi j) according to a suitable mathematical rule. More details about ANN
were provided by Basheer and Hajmeer [53]. The overall computational complexity of this algorithm
is OANN(emnk), for n instances, m features, e epochs, and k neurons.

3.2.5. Logistic Regression

LR is a statistical technique that is a generalization of linear regression. It has two main types,
binary LR (BLG), used for the binary dependent variable (i.e., the outcome is “0” or “1”.), and
multinomial LR (MLR), used for a dependent variable with more than two categories. When working
with LR, we need to make an algebraic conversion to arrive at our usual linear regression equation,
Y = β0 + β1X + e. BLG estimates the probability of a binary response based on a set of predictor
(independent) variables that may be continuous, discrete, dichotomous, or a mix of any of these.
The BLR curve is constructed using the natural logarithm of the odds of the target variable. The odds
are the probability that a particular outcome is that of a case divided by the probability that it is a
noncase (i.e., Ln p

1−p ). The logistic (logit) transformation is the logarithm of the odds of the positive
response and is defined in Equation (10):

ηi = Ln
p(x)

1− p(x)
= β0 + β1x1 + . . .+ βnxn (10)

where X = [x1, x2, . . . , xn]
T is the set of predictor variables, and β = [β1, β2, . . . , βn]

T is the set of
regression coefficients. Solving for p is done with Equation (11):

p =
e(β0+β1x1+...+βnxn)

1 + e(β0+β1x1+...+βnxn)
=

1

1 + e−(β0+β1x1+...+βnxn)
(11)

where β0 is a constant that moves the curve left and right, and βi is the slope that defines the steepness
of the curve, for i = 1, 2, . . . , n, n is the number of predictors. It uses maximum likelihood estimation
(MLE) to obtain the model coefficients that relate predictors to the target, as shown in Equation (12):

β1 = β0 +
[
XTWX

]−1
.XT(y− µ) (12)

where β is a vector of the LR coefficients, W is a square matrix of order N with elements niπi(1−πi)

on the diagonals and zeros everywhere else, and µ is a vector of length N with elements µ = niπi.
After the estimation of this initial function, the process is repeated until the log likelihood (LL) does
not change significantly. A pseudo R2 value (e.g., Efron’s, McFadden’s, and Count) is used to indicate
the adequacy (goodness-of-fit) of the regression model. The overall computational complexity of this
algorithm is OLR

(
nm2

)
, for n instances and m features.

3.2.6. Fuzzy Decision Tree

The medical domain is usually imprecise in nature. Handling the fuzziness of data in a classifier
is critical. This study uses the fuzzy C4.5 algorithm, which improves on the performance of C4.5.
The overall computational complexity of this algorithm is OFDT, and it is equal to the complexity of
DT. Using CPGs and domain experts, we first formulated the fuzzy sets for all of the used numerical
features. Secondly, we fuzzified the preprocessed training datasets with linguistic labels of fuzzy sets
that have the highest compatibility with the input values.
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More formally, for k samples, crisp dataset D represented by n features, [F1, F1, . . . , Fn],
the n-dimensional tuple Ti = [a1, a1, . . . , an] is represented as a kn-dimensional vector: Ti =[
≺ µFT1 [a1],µFT2 [a1], . . . ,µFTk [a1] �, . . . ,≺ µFT1 [an],µFT2 [an], . . . ,µFTk [an] �

]
where µFTk(ai) represents

the degree of membership of the fuzzy term FTk of feature Fi (Fi = ai), k is the number of terms,
and n is the number of variables. D is converted to fuzzy dataset DF. If linguistic variable Fn has
k fuzzy terms, FT1, FT2, . . . , FTk, then for each crisp value v of Fn, the representative fuzzy value
is max

{
µFT1 {v},µFT2 {v}, . . . ,µFTk {v}

}
, or µFT j(v) ≥ 0.5. For example, if serum uric acid = 3.4, and its

fuzzification is µLow(3.4) = 0.44, µNormal(3.4) = 0.56, and µHigh(3.4) = 0.00, then the selected label
for this value is Normal. We performed some preprocessing for the generated discretized data by
removing the redundant vectors (cases). Finally, we created the FDT by applying the C4.5 algorithm to
the resulting fuzzy training sets using Weka’s J48 algorithm.

3.2.7. K-Nearest Neighbors

These kind of algorithms are distance-based classifiers that do not explicitly build models. The class
value of a new case is equal to the class of its nearest neighbor, based on a specific distance equation.
Heterogeneous Euclidean-Overlap Metric (HEOM) can be used for the distance measure to determine
the K-nearest neighbors. HEOM calculates different distance measures for different types of attribute.
Euclidean distance is used for numerical features with Equation (13):

DN
(
Xi, Xk

)
=

√√∑
j

(
xi

j − xk
j

)2
(13)

where Xi and Xk are two cases, xi
j and xk

j are the j feature in both cases ( j = 1, 2, . . . n), and N is the
number of features. Categorical features use the binary equation in Equation (14):

(
Xi, Xk

)
=

∑
j

d j
(
xaj, xbj

)
, d j

(
xaj, xbj

)
=

{
0xaj , xbj
1xaj = xbj

(14)

For input case x, the KNN technique selects the k nearest neighbors and represents it in Vx =

{Vk}
K
k=1, for Vk as the k nearest neighbor; and the output equals the output of the majority of these

samples. If cases contain both numerical and categorical features, then the total distance is DT
(
Xi, Xk

)
=∑

q∈Q DN +
∑

c∈C DC for q numeric and c categorical features, and q + c = n. An appropriate choice
for k is very important, such as k= 3 to select the nearest three cases. Once the nearest neighbor
list is selected, the new case can be classified based on a voting method, such as majority voting or
distance weighted voting. In majority voting, the total vote Ti(t) of the neighbors of Xi having the
label t is Ti(t) =

∑
k∈Vx(I(t, yk)), where I(t, yk) = 1 if t = yk, and I(t, yk) = 0 otherwise. The overall

computational complexity of this algorithm is OKNN(n logk), for n instances and k neighbors.

3.3. Classifier Ensembles

A classifier ensemble, or a meta-classifier, is the combination of different models to produce
a stronger and stable one. There are many classifier ensemble techniques, including bagging (i.e.,
bootstrap aggregation), boosting, stacking, random subspace, decorate, and rotation forest [54–58].
They can increase the predictive performance of a single model. A detailed discussion of these
techniques was provided by Kuncheva [19]. This study uses a combination of random subspace
(RS) [54] and bagging [55,57] techniques. RS is based on the theory of stochastic discrimination.
It projects different feature vectors, vi, into fewer-dimensional subspaces, without replacement, in
order to train ensemble members mi. This technique is suitable for medical applications that have
highly dimensional data. The key issue of how to select vi is solved by collecting the features that are
medically related, such as liver tests, kidney tests, glucose level tests, and symptoms. In addition, the
medically collected features are correlated. The weighted voting techniques are used from the bagging
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method. To calculate the final decision, the votes are multiplied by weights obtained from the classifier
performance metrics (such as accuracy) with wi = log

( pi
1−pi

)
, where pi is the accuracy of the ith classifier.

To improve the performance in this study, weights are based on F-measure.

4. The Proposed Diabetes Ensemble Classifier

The combination of outputs from several different models is an obvious approach to making
decisions that are more reliable. In data mining, this is called ensemble classifiers. Our model works
like a committee of experts, where each expert is a classifier. Each expert is specialized in a limited
domain. The committee often comes up with a wiser decision than individual experts do. The opinions
of all experts (i.e., the classifiers) are amalgamated for consideration by using any mechanism, such
as weighted voting. An ensemble classifier is seldom less accurate than individual classifiers, but
errors still occur, because no training scheme is perfect [59]. Errors depend on how well the algorithm
matches the problem at hand and the quality of the training data (i.e., data preprocessing). To enhance
this process, we tested seven well-known classifiers with every preprocessed sub-dataset, selected the
classifier with the best performance for each sub-dataset, and collected their F-measures. The final
output is based on a weighted voting technique. The proposed framework involves domain and data
understanding, data preprocessing, data distribution, and ensemble building. Figure 3 shows the
detailed architecture of the proposed ensemble framework.

Figure 3. The detailed architecture of the proposed ensemble framework.
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4.1. Domain and Data Understanding

This step is critical to understand the nature of diabetes, its critical characteristics, and the right
diagnosis process. Domain experts participated in this process with the help of some of the most recent
diabetes CPGs [60,61]. In another study, authors created a standard diabetes diagnosis ontology in
Web Ontology Language 2 (OWL 2) format, which deeply studies this issue [50]. According to the
most recent CPGs, a diabetes diagnosis cannot be made by only conducting lab tests for glucose levels.
All of the patient profile is critical to making the right decision. In this study, we collect these complete
sets of patient characteristics.

4.2. Data Preprocessing

Data preprocessing tasks are necessary to transform the original raw information with incomplete,
inconsistent, and noisy data into a high-quality and cleaned dataset for subsequent analysis.
The classification performance can be improved mainly by selecting the right combination of
preprocessing methods [62]. There is no predefined sequence of preparation steps. We used
Weka 3.8.1 application programming interface (API) to finish this step. The major tasks are in
the following sequence.

Step 1: Unified unit of Measurement

All numerical features are lab tests with different units of measurement (UoMs). The raw dataset
has many features with many units of measurement. For example, the two hour plasma glucose (2h PG)
feature has some values in millimoles per liter (mmol/L) and some in milligrams per decaliter (mg/dL).
This produces an inconsistent dataset, e.g., 11.1 mmol/L = 200 mg/dL. All features are converted to use
unified UoMs.

Step 2: Missing Value Imputation

In our dataset, the class label feature has 0% missing values, and there are no cases with a large
number of missing values, so no cases are entirely deleted. We have some features with a large
percentage of missing values, such as CA-125, α-fetoprotein (AFP) serum, and ferritin. These features
are removed from the dataset. The remaining attribute set has 57 features. All other features have 0%
missing values.

Step 3: Outlier Detection and Prevention

Outliers and extreme values affect the performance of the classifier. We used interquartile range
as a filter for detecting outliers and extreme values. The platelet count feature has outliers in four cases
(where the value is 2000), but the most abnormal value could be 400. This value is replaced by the
average of this feature, which is 195.91.

Step 4: Data Normalization, Transformation, and Coding

The normalization process has many techniques, such as z-score and min-max. In this model,
all numerical features are rescaled into the interval [0, 1] to have the same effect in the classification
algorithm. We used the min-max technique. Equation (15) gives a general formula to normalize A in a
specific [C, D] range, where A is the old value and B is the normalized value, and the range used in our
case is [0.0, 1.0]:

B =

(
A−minimum value o f A

maximum value o f A−minimum value o f A

)
× (D−C) + C (15)

The raw dataset has some features that are transformed into other meaningful ones. For example,
weight in kilograms and height in meters are transformed to body mass index (BMI) in kg/m2 as follows:
BMI = weight (kg)/(height(m))2. Medical data need some form for the unification of the contents.
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The occupation feature has many jobs, so we convert its values into “not hard work”, “hard
work” and “non.” Many other categorical features, such as vision and frequency of urination, have
many inconsistent values. With the guidance of a domain expert, we encode these values in a unified
manner. As another example, the raw medical data for frequency of urination are 3–5 times, 6–8 times,
9–10 times, and more than 10 times, encoded to normal, +, ++, +++, respectively.

Step 5: Discretization

This process is performed on the numerical features to partition values into a finite number of
non-overlapping intervals. Finding the optimal discretization of a feature is NP-hard [62]. There are
two main techniques of discretization, namely supervised method, where the class feature is considered,
and the unsupervised method, where the class feature is not considered. In methods such as equal
width and equal frequency, a predefined number of bins (n) is determined. Because defining the
optimal number of bins in unsupervised methods is complex, we utilized the supervised method based
on Fayyad and Irani’s MDL method [63].

4.3. Data Distribution

The main dataset is divided into different complementary subsets. Each subset is represented by
a smaller number of features (nine groups), as shown in Table 1. Building an ensemble classifier’s base
models with different sets of features can be done randomly, where a set of N features can be randomly
distributed to M models [64]. A more intuitive way is to distribute these features according to their
medical and algorithmic correlations. According to domain expert opinions and diabetes CPGs [60,61],
the set of features is divided into 10 subsets. One of these sets is removed in the preparation step
because it has many missing values. Each set contains a medically related set of features. We used a
correlation technique to recheck the association of these features. Each group is used with a specific
base classifier, all of which are collected in the combined ensemble framework.

4.4. Building the Ensemble Classifier

In this section, we discuss the construction of the complete ensemble classifier. To achieve this
goal, we have to select the best classifier for each dataset with the most suitable feature set. The overall
process is formulated in Algorithm 1. This phase has two main steps that are discussed in this section.

4.4.1. Feature Selection

Even the best classifiers perform poorly if the set of features is not chosen correctly. As a result,
feature selection (FS) is one of the most critical factors for building efficient classifiers. FS improves
the prediction performance, avoids overfitting, and provides faster and more cost-effective predictors.
There is no perfect FS technique for all datasets, and the selection is based on the evaluation process.
FS techniques can be a model-free (i.e., a filter) approach, which selects features independently of a
classifier based on distance, correlation, or information theoretic measures (e.g., Chi-squared, gain
ratio, or information gain), or a model-based (wrapper) approach. It applies specific classifiers (e.g.,
DT) and uses their accuracies based on 10-fold cross validation as a measure of subset effectiveness.
For each prepared dataset, a diverse combination of FS methods is utilized, including the filter method
by correlation-based feature selection (CFS), and the wrapper method by using a classifier (e.g., the 1R
classifier). Hall and Holmes [65] asserted that CFS and wrappers as the most suitable FS methods.
The main part of CFS is heuristics to evaluate the importance or the merits of attributes to predict the
label class, obtained with Equation (16):

AF =

∑
j U

(
A j, C

)
√∑

i
∑

j U
(
Ai, A j

) (16)
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where AF is the merit of feature subset F, C is the class attribute, and the indices i and j range over all
attributes in the set. First, all numerical features are discretized; the correlation between two nominal
attributes, A and B, can be measured using symmetric uncertainty from Equation (17):

U(A, B) = 2×
H(A) + H(B) −H(A, B)

H(A) + H(B)
(17)

where H is the entropy function, H(A, B) is the joint entropy of A and B, and U(A, B) ∈ [0, 1]. CFS’s
CfsSubsetEval technique uses the GreedyStepwise search method, which performs a greedy forward
or backward search through the list of attribute subsets. We measured the performance of all selected
classifiers with each FS technique. Based on the evaluations, we selected the best FS technique for
every sub-dataset for every classifier.

Algorithm 1. Construction of an enhanced ensemble classifier.

Input:

- D: a set of n× d training tuples + class label vector L = {0, 1} (0: no diabetes, 1: diabetes)
- M: a pool of classifiers, M = {DT, SVM, ANN, KNN, NB, LR, FDT}

Output:

- M: the trained composite model
- Z: the output of the ensemble for new cases

Method:

1. Di ←
{
(n× ri) ∈ ‖D‖,∀i ∈ 1, 2, . . . t,

∑
i ri = d }. // ‖D‖ is all vertical partitions of D with ri attributes.

// according to a correlation algorithm and expert opinion.
s← i // the ensemble size

2. V ← base classifiers weight vectors based on their F-measures
3. for j = 1 to s do
4. for k = 1 to |M| do // |M| is the number of classifiers in M.

5. train (Mk, D j) // for D j =
(
n× r j

)
, Mk ∈M is a heterogeneous base classifier.

6. test (Mk, D j, TA) // for TA is a testing method such as k-fold cross-validation.
7. end for
8. select the model M j with the best F-measure for the set D j

9. V+ = F-measure of M j

10. end for

11. M←
∑

j=1,2, ...,s M j + V

12. for a new unseen instance X do
13. - distribute X vertically as done in step 1

14. - classify X by M

15. - final decision for X is Z← argmax
c j∈V

∑M
i=1 wi

c j
(X) f i

c j
(X)

16. - Return Z
17. end for

4.4.2. Selecting and Building Base Classifiers

The ensemble classifier is a technique to enhance the accuracy of composite models [13]. However,
without accurate and proper design, the combined model may perform worse than individual classifiers.
A crucial step in the design process is to select the optimal set of base classifiers. The selection is
based on the accuracy of these techniques. There are two categories of ensemble framework [17]:
the homogeneous framework, which uses base classifiers of the same type, and the heterogeneous
framework, which uses base classifiers of different types. The ensemble approach requires a level of
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disagreement between member classifiers (model diversity) to cover errors, and this can be achieved in
the heterogeneous approach [42,66]. Many studies asserted that the power of a heterogeneous ensemble
has a strong relation to the performance of the base classifiers and the lack of correlation between
them [8]. As a result, we used the heterogeneous approach based on an RS method. We selected
seven of the best-known algorithms that produced high accuracy in the medical domain to become our
base classifiers. Each classifier has a diverse set of qualities that complement each other to form an
accurate ensemble model. Each classifier is trained using all training sub-datasets from the previous
step and with two types of feature selection algorithms. Based on a collection of evaluation metrics,
the best algorithm was selected for every sub-dataset and with a specific set of features. Building an
ensemble based on different base classifiers where each one works on various feature sets can improve
the performance of the combined model [64].

4.4.3. Ensemble of Base Classifiers

The most popular types of integration are algebraic methods (e.g., sum, weighted average, min,
max, etc.) and voting methods, including unweighted voting (i.e., a plurality or majority) and weighted
voting [67,68]. Voting methods are more accurate than algebraic ones. In unweighted voting, each
model suggests a class value and, from Equation (18), the ensemble proposes the class with the
most votes:

class(x) = argmaxci∈dom(y)

∑
k

g(yk(x), ci), g(y, c) =
{

1y = c
0y , c

(18)

where yk(x) is the class result of the k−th classifier, and g(y, c) is an indicator function. For instance,
Majid et al. [69] used an IDM-PhyChm-Ens classifier based on majority voting for cancer prediction
using amino acid sequences. This voting is suitable if the learning schemes perform comparably well.
In the weighted voting scheme, if base classifiers produce different predictions, then the final prediction
will be based on all of the classifier weights. Weights can be assigned statically or dynamically [13].
The weights can be assigned based on the classifier accuracy, where the classifier with high accuracy
attains a high weight, and vice versa. The final classification is based on this objective function
(OF). However, the classifier can have biased accuracy results based on a biased dataset if there are
unbalanced classes. The OF should be as contradictory as possible to achieve the highest performance.
In addition, we need an unbiased metric to assign the weights to the base classifiers, instead of the
accuracy measure. In our framework, a multi-objective OF is used based on F-measure (i.e., a weighted
average of precision and recall) calculated in the training phase of the base classifiers. If there are M
base classifiers, and X is the new case to be decided, the final decision is calculated with Equation (19):

Z = argmax
c j∈V

M∑
i=1

wi
c j
(X) f i

c j
(X) (19)

where Z is the output class for X; V is the set of possible classes; wi
c j
(X) is the ith classifier’s weight

based on its F-measure; and f i
c j
(x) ∈ {0, 1} is the decision result of the ith classifier for X. If the ith

classifier predicts that X belongs to a class c j, then give f a value of 1; otherwise, the value is 0. We used
an enhanced combination of bagging and random subspace, as shown in Figure 3. Bagging builds
models using random horizontal subsets of the original training set, and then, classifies a new instance
by aggregating the individual model predictions to form a final prediction. Bagging reduces overfitting
and works best with strong models, such as SVM, DT, and NB. On the other hand, random subspace
divides the dataset vertically into different feature sets. Each set is used with a specific classifier. For a
new instance, each trained classifier predicts one class of 0 or 1, and a voting technique is used to
provide the final decision. For example, suppose the trained base classifiers produce the following
F-measures in the training phase: SVM = 0.6, DT = 0.3, NB = 0.9, ANN = 0.89, LR = 0.85, FDT = 0.5,
and KNN = 0.35. Now, suppose the classifiers have predicted the following classes for a new test
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instance: SVM = 0, DT = 0, NB = 1, ANN = 1, LR = 1, FDT = 0, and KNN = 0. The weighted vote Z is
calculated as follows for each class—class 0: SVM + DT + FDT + KNN→ 0.6 + 0.3 + 0.5 + 0.35 = 1.75,
and class 1: NB + ANN + LR→ 0.9 + 0.89 + 0.85 = 2.64. Hence, the new instance is put into class 1
because it has been classified with only three (but strong) classifiers.

5. Results and Discussion

This section discusses the evaluation process of our ensemble classifier and all of its base classifiers.
As shown in Algorithm 1, many parameters need to be calculated. Each of the seven algorithms is
used with each sub-dataset, and results are collected. For each algorithm, the evaluation is done
using different feature sets according to different FS techniques. The purpose of these comparative
evaluations is to select the best feature set for each algorithm based on the natures of the dataset and
the classifier. The results of the selections are combined in the proposed ensemble classifier to take
the final decision. The primary focus of this work is to show the feasibility and suitability of the data
mining framework for DM diagnosis. To keep our work focused and data-efficient, we used the default
Weka recommended model parameters instead of performing hyper-parameter tuning.

5.1. Evaluation Metrics

To calculate the performance efficiency of our ensemble framework, a set of 11 metrics was used,
including F-measure and accuracy. In this study, diabetes is defined as the positive event, and no
diabetes is defined as the negative event. The confusion matrix for two classes is used to extract
the values of true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP
indicates the tuples that correctly indicate diabetes. TN refers to the tuples that correctly indicate no
diabetes. FP indicates the tuples that incorrectly indicate diabetes, and they are not diabetics. Finally,
FN refers to the tuples that incorrectly indicate no diabetes, and they have diabetes. To measure the
performance of the proposed model, we utilized the following metrics. Sensitivity is the proportion of
true positives to all positive instances in the dataset; specificity is the proportion of true negatives to
all negative instances. The classifier should be as sensitive and as specific as possible. Classification
accuracy (CA) determines how well the classifier correctly identifies objects. Precision, or positive
predictive value (PPV), is the proportion of cases with positive test results that are correctly classified.
In addition, negative predictive value (NPV) is the proportion of cases with negative test results that
are correctly classified. F-measure (FM) is the harmonic mean of precision and recall. The Matthews
correlation coefficient (MCC) calculates the correlation between prediction and observation for the
binary classification [70], as shown in Equation (20):

MCC =
(TP× TN) − (FP× FN)√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(20)

F-measure and MCC are critical because they measure the overall performance of a method. The false
positive rate (FPR) is the inverse of specificity, indicating the proportion of negative instances that are
erroneously classified as positive, as shown in Equation (21).

FPR =
FP

FP + TN
(21)

The false negative rate (FNR) is the inverse of sensitivity, indicating the proportion of positive
instances that are erroneously classified as negative, as shown in Equation (22):

FNR =
FN

TP + FN
(22)
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The error rate (ER), or misclassification rate, is the inverse of accuracy, giving the percentage of
instances that are erroneously classified, as shown in Equation (23):

ER = 1−AC =
FP + FN

TP + TN + FP + FN
(23)

The geometric—means (GM) metric proposed by Kubat and Matwin [71] can also be used
to evaluate classifiers as well, as shown in Equation (24). GM measures the balance between the
classification performance of both the majority and the minority classes. A low GM indicates poor
performance for the positive cases, even if the negative cases are correctly classified. GM avoids
overfitting the negative class and under-fitting the positive class.

GM =
√

se× sp (24)

5.2. Evaluation Results

In this section, we discuss the comparison between the proposed framework and other methods,
including individual classifiers. We compared the ensemble model with other ensemble models in
the literature, and with popular individual classifiers used in our combined model. Due to space
restrictions, we used 10-fold cross-validation. The second issue is quantification. It determines what
metrics will be used to measure classifier performance. This issue was discussed in the previous
section. As mentioned earlier, we selected seven popular classifiers (NB, SVM, DT, FDT, ANN, LR, and
KNN) from different domains to build a well-designed heterogeneous ensemble. To select the most
effective algorithm with the most effective feature set for every sub-dataset, we evaluated all of the
utilized base classifiers with every sub-dataset. We conducted this evaluation with the CFS and the
wrapper FS techniques.

5.2.1. Base Classifier Evaluations Based on CFS

The base classifiers were executed with every sub-dataset by using the CFS technique.
We constructed 63 different base classifiers (i.e., seven classifiers for nine sub-datasets). FDT was not
applied to the categorical sub-datasets including symptoms, urine analysis, and diseases. Table 2
collects the performance metrics, including CA, Se, Sp, PPV, NPV, FM, MCC, FPR, FNR, ER, and GM.
To make the comparison more straightforward, we compared the accuracy and F-measure of these
algorithms for each sub-dataset. The other metrics were used to make more in-depth comparisons.
As shown in Figures 4 and 5, we can select the best classifiers suitable for each specific sub-dataset.
For demographics, DT had the best performance at 70% CA and 74.3% FM. For sugar lab tests, DT
also had the best performance at 90% CA and 90.6% FM. For hematological profiles, LR had the best
performance at 65% CA and 71.2% FM. For the symptoms sub-dataset, the classification performance
of ANN outperformed other classifiers with 58.3% CA and 60.3% FM. For kidney function lab tests,
DT had the best performance at 51.7% CA and 68.1% FM. The urine analysis sub-dataset saw better
classification from the KNN algorithm, with 68.3% CA and 64.2% FM. For the lipid profiles, DT
provided 63.3% CA and 73.2% FM as the most accurate. FDT had the best performance for liver
function tests, with 61.7% CA and 51.1% FM. Finally, ANN had the best performance for the diseases
sub-dataset, with 53.3% CA and 46.2% FM. All of these evaluations are based on the CFS technique
and 10-fold cross-validation.
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Table 2. The comparison of base classifiers for all datasets using CFS and 10-fold cross-validation.

Sub-Dataset Algorithm CA Se Sp PPV NPV FM MCC FPR FNR ER GM

Demographics

SVM 0.567 0.719 0.393 0.575 0.550 0.639 0.118 0.607 0.281 0.433 1.054
DT 0.700 0.813 0.571 0.684 0.727 0.743 0.397 0.429 0.188 0.300 1.177
NB 0.616 0.656 0.571 0.636 0.593 0.646 0.228 0.429 0.344 0.384 1.108

ANN 0.650 0.781 0.500 0.641 0.667 0.704 0.294 0.500 0.219 0.350 1.132
LR 0.650 0.719 0.571 0.657 0.640 0.687 0.294 0.429 0.281 0.350 1.136

FDT 0.550 0.625 0.464 0.571 0.520 0.597 0.090 0.536 0.375 0.450 1.044
KNN (k = 3) 0.500 0.563 0.429 0.529 0.462 0.545 0.009 0.571 0.438 0.500 0.996

Sugar lab
tests

SVM 0.867 0.875 0.857 0.875 0.857 0.875 0.732 0.143 0.125 0.133 1.316
DT 0.900 0.906 0.893 0.906 0.893 0.906 0.799 0.107 0.094 0.100 1.341
NB 0.867 0.875 0.857 0.875 0.857 0.875 0.732 0.143 0.125 0.133 1.316

ANN 0.867 0.844 0.893 0.900 0.833 0.871 0.735 0.107 0.156 0.133 1.318
LR 0.833 0.813 0.857 0.867 0.800 0.839 0.668 0.143 0.188 0.167 1.292

FDT 0.648 0.963 0.333 0.591 0.900 0.732 0.381 0.667 0.037 0.352 1.139
KNN (k = 3) 0.833 0.813 0.857 0.867 0.800 0.839 0.668 0.143 0.188 0.167 1.292

Hematological
profiles

SVM 0.633 0.781 0.464 0.625 0.650 0.694 0.260 0.536 0.219 0.367 1.116
DT 0.617 0.750 0.464 0.615 0.619 0.676 0.224 0.536 0.250 0.383 1.102
NB 0.650 0.750 0.536 0.649 0.652 0.696 0.293 0.464 0.250 0.350 1.134

ANN 0.617 0.750 0.464 0.615 0.619 0.676 0.224 0.536 0.250 0.383 1.102
LR 0.650 0.813 0.464 0.634 0.684 0.712 0.297 0.536 0.188 0.350 1.130

FDT 0.383 0.563 0.464 0.439 0.433 0.493 0.270 0.821 0.531 0.617 1.014
KNN (k = 3) 0.617 0.750 0.464 0.615 0.619 0.676 0.224 0.536 0.250 0.383 1.102

Symptoms

SVM 0.550 0.656 0.429 0.568 0.522 0.609 0.087 0.571 0.344 0.450 1.041
DT 0.467 0.531 0.393 0.500 0.423 0.515 0.076 0.607 0.469 0.533 0.961
NB 0.567 0.594 0.536 0.594 0.536 0.594 0.129 0.464 0.406 0.433 1.063

ANN 0.583 0.594 0.571 0.613 0.552 0.603 0.165 0.429 0.406 0.417 1.080
LR 0.567 0.625 0.500 0.588 0.538 0.606 0.126 0.500 0.375 0.433 1.061

KNN (k = 3) 0.500 0.344 0.679 0.550 0.475 0.423 0.024 0.321 0.656 0.500 1.011

Kidney
function lab

tests

SVM 0.467 0.875 0.000 0.500 0.000 0.636 0.250 1.000 0.125 0.533 0.935
DT 0.517 0.969 0.000 0.525 0.000 0.681 0.122 1.000 0.031 0.483 0.984
NB 0.417 0.688 0.107 0.468 0.231 0.557 0.249 0.893 0.313 0.583 0.892

ANN 0.417 0.625 0.179 0.465 0.294 0.533 0.217 0.821 0.375 0.583 0.896
LR 0.450 0.500 0.393 0.485 0.407 0.492 0.107 0.607 0.500 0.550 0.945

FDT 0.467 0.500 0.429 0.500 0.429 0.500 0.071 0.571 0.500 0.533 0.964
KNN (k = 3) 0.467 0.375 0.571 0.500 0.444 0.429 0.055 0.429 0.625 0.533 0.973

Lipid
profiles

SVM 0.500 0.875 0.071 0.519 0.333 0.651 0.089 0.929 0.125 0.500 0.973
DT 0.633 0.938 0.286 0.600 0.800 0.732 0.299 0.714 0.063 0.367 1.106
NB 0.517 0.281 0.786 0.600 0.489 0.383 0.077 0.214 0.719 0.483 1.033

ANN 0.567 0.844 0.250 0.563 0.583 0.675 0.117 0.750 0.156 0.433 1.046
LR 0.517 0.719 0.286 0.535 0.471 0.613 0.005 0.714 0.281 0.483 1.002

FDT 0.467 0.438 0.250 0.500 0.333 0.467 0.063 0.500 0.438 0.533 0.829
KNN (k = 3) 0.567 0.875 0.214 0.560 0.600 0.683 0.120 0.786 0.125 0.433 1.044

Urine
analysis

SVM 0.667 0.500 0.857 0.800 0.600 0.615 0.378 0.143 0.500 0.333 1.165
DT 0.683 0.531 0.857 0.810 0.615 0.642 0.406 0.143 0.469 0.317 1.178
NB 0.667 0.500 0.857 0.800 0.600 0.615 0.378 0.143 0.500 0.333 1.165

ANN 0.700 0.500 0.929 0.889 0.619 0.640 0.467 0.071 0.500 0.300 1.195
LR 0.667 0.469 0.893 0.833 0.595 0.600 0.394 0.107 0.531 0.333 1.167

KNN (k = 3) 0.683 0.531 0.857 0.810 0.615 0.642 0.406 0.143 0.469 0.317 1.178

Liver
function

tests

SVM 0.483 0.813 0.107 0.510 0.333 0.627 0.112 0.893 0.188 0.517 0.959
DT 0.417 0.594 0.214 0.463 0.316 0.521 0.206 0.786 0.406 0.583 0.899
NB 0.533 0.250 0.857 0.667 0.500 0.364 0.134 0.143 0.750 0.467 1.052

ANN 0.500 0.531 0.464 0.531 0.464 0.531 0.004 0.536 0.469 0.500 0.998
LR 0.550 0.469 0.643 0.600 0.514 0.526 0.113 0.357 0.531 0.450 1.054

FDT 0.617 0.375 0.405 0.800 0.556 0.511 0.309 0.107 0.625 0.383 0.883
KNN (k = 3) 0.583 0.500 0.679 0.640 0.543 0.561 0.181 0.321 0.500 0.417 1.086

Diseases

SVM 0.517 0.438 0.607 0.560 0.486 0.491 0.045 0.393 0.563 0.483 1.022
DT 0.450 0.375 0.536 0.480 0.429 0.421 0.090 0.464 0.625 0.550 0.954
NB 0.600 0.500 0.714 0.667 0.556 0.571 0.218 0.286 0.500 0.400 1.102

ANN 0.533 0.375 0.714 0.600 0.500 0.462 0.094 0.286 0.625 0.467 1.044
LR 0.483 0.281 0.714 0.529 0.465 0.367 0.005 0.286 0.719 0.517 0.998

KNN 0.466 0.344 0.607 0.500 0.447 0.407 0.051 0.393 0.656 0.534 0.975
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Figure 4. A comparison between CA and FM for base classifiers using CFS (part 1).

Figure 5. A comparison between CA and FM for base classifiers using CFS (part 2).

5.2.2. Base Classifier Evaluation Based on Wrapper FS

In this section, we evaluate the set of base classifiers on every sub-dataset and register the
results. The wrapper FS algorithm was applied first to determine the most suitable feature subset,
and the selected features were then used to train and test every classifier. We constructed 63 different
base classifiers (i.e., seven classifiers for nine sub-datasets). FDT was not applied to the categorical
sub-datasets including symptoms, urine analysis, and diseases. Table 3 collects all relevant performance
metrics, including CA, FM, Se, Sp, MCC, etc., for each algorithm on all datasets. As before, we collected
the best base classifiers for all sub-datasets. We concentrated on CA and FM for the comparison
between different algorithms.

As shown in Figures 6 and 7, we can select the best classifiers suitable for each specific sub-dataset.
For demographics, SVM had the best performance at 70% CA and 74.4% FM. For sugar lab tests,
DT had the best performance at 90% CA and 90.6% FM. For the hematological profiles, NB had the
best performance with 66.7% CA and 70.6% FM. For the symptoms sub-dataset, the classification
performance of SVM outperformed other classifiers, with 61.7% CA and 56.6% FM. For the kidney
function lab tests, DT had the best performance at 53.3% CA and 69.6% FM. The urine analysis
sub-dataset obtained better classification with the LR algorithm, at 73.3% CA and 66.7% FM. For the
lipid profiles, ANN provided 66.7% CA and 74.4% FM, which were the most accurate.
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Table 3. The comparison of base classifiers for all datasets using wrapper FS and 10-fold cross-validation.

Dataset Algorithm CA Se Sp PPV NPV FM MCC FPR FNR ER GM

Demographics

SVM 0.700 0.813 0.571 0.684 0.727 0.743 0.397 0.429 0.188 0.300 1.177
DT 0.667 0.906 0.393 0.630 0.786 0.744 0.353 0.607 0.094 0.333 1.140
NB 0.650 0.688 0.607 0.667 0.630 0.677 0.295 0.393 0.313 0.350 1.138

ANN 0.700 0.813 0.571 0.684 0.727 0.743 0.397 0.429 0.188 0.300 1.177
LR 0.633 0.688 0.571 0.647 0.615 0.667 0.261 0.429 0.313 0.367 1.122

FDT 0.483 0.625 0.321 0.513 0.429 0.563 0.056 0.679 0.375 0.517 0.973
KNN (k = 3) 0.650 0.656 0.643 0.677 0.621 0.667 0.299 0.357 0.344 0.350 1.140

Sugar lab
tests

SVM 0.867 0.875 0.857 0.875 0.857 0.875 0.732 0.143 0.125 0.133 1.316
DT 0.900 0.906 0.893 0.906 0.893 0.906 0.799 0.107 0.094 0.100 1.341
NB 0.883 0.875 0.893 0.903 0.862 0.889 0.767 0.107 0.125 0.117 1.330

ANN 0.883 0.875 0.643 0.903 0.621 0.889 0.767 0.107 0.344 0.117 1.232
LR 0.850 0.844 0.857 0.871 0.828 0.857 0.700 0.143 0.156 0.150 1.304

FDT 0.648 0.963 0.333 0.591 0.900 0.732 0.381 0.667 0.037 0.352 1.139
KNN (k = 3) 0.867 0.844 0.893 0.900 0.833 0.871 0.735 0.107 0.156 0.133 1.318

Hematological
profiles

SVM 0.600 0.781 0.393 0.595 0.611 0.676 0.190 0.607 0.219 0.400 1.083
DT 0.567 0.719 0.393 0.575 0.550 0.639 0.118 0.607 0.281 0.433 1.054
NB 0.667 0.750 0.571 0.667 0.667 0.706 0.327 0.429 0.250 0.333 1.150

ANN 0.650 0.750 0.536 0.649 0.652 0.696 0.293 0.464 0.250 0.350 1.134
LR 0.633 0.813 0.429 0.619 0.667 0.703 0.262 0.571 0.188 0.357 1.114

FDT 0.417 0.594 0.214 0.463 0.316 0.521 0.206 0.786 0.406 0.583 0.899
KNN (k = 3) 0.583 0.625 0.536 0.606 0.556 0.615 0.161 0.464 0.375 0.417 1.077

Symptoms

SVM 0.617 0.469 0.786 0.714 0.564 0.566 0.266 0.214 0.531 0.383 1.120
DT 0.467 0.375 0.571 0.500 0.444 0.429 0.055 0.429 0.625 0.533 0.973
NB 0.550 0.563 0.536 0.581 0.517 0.571 0.098 0.464 0.438 0.450 1.048

ANN 0.467 0.375 0.571 0.500 0.444 0.429 0.055 0.429 0.625 0.533 0.973
LR 0.550 0.625 0.464 0.571 0.520 0.597 0.090 0.536 0.375 0.450 1.044

KNN (k = 3) 0.500 0.563 0.429 0.529 0.462 0.545 0.009 0.571 0.438 0.500 0.996

Kidney
function lab

tests

SVM 0.500 0.875 0.071 0.519 0.333 0.651 0.089 0.929 0.125 0.500 0.973
DT 0.533 1.000 0.000 0.533 0.000 0.696 0.000 1.000 0.000 0.467 1.000
NB 0.433 0.531 0.321 0.472 0.375 0.500 0.150 0.679 0.469 0.567 0.923

ANN 0.450 0.625 0.447 0.488 0.586 0.548 0.134 0.750 0.375 0.550 1.036
LR 0.417 0.531 0.286 0.459 0.348 0.493 0.188 0.714 0.469 0.583 0.904

FDT 0.467 0.594 0.321 0.500 0.409 0.543 0.088 0.679 0.406 0.533 0.957
KNN (k = 3) 0.533 0.469 0.607 0.577 0.500 0.517 0.076 0.393 0.531 0.467 1.037

Lipid
profiles

SVM 0.533 1.000 0.000 0.533 DIV/0! 0.696 0.000 1.000 0.000 0.457 1.000
DT 0.600 0.938 0.214 0.577 0.750 0.714 0.223 0.786 0.063 0.400 1.073
NB 0.517 0.375 0.321 0.571 0.310 0.453 0.056 0.321 0.625 0.483 0.835

ANN 0.667 0.906 0.393 0.630 0.786 0.744 0.353 0.607 0.094 0.333 1.140
LR 0.617 0.719 0.500 0.622 0.609 0.667 0.224 0.500 0.281 0.383 1.104

FDT 0.483 0.531 0.429 0.515 0.444 0.523 0.040 0.571 0.469 0.517 0.980
KNN (k = 3) 0.600 0.594 0.607 0.633 0.567 0.613 0.200 0.393 0.406 0.400 1.096

Urine
analysis

SVM 0.717 0.469 1.000 1.000 0.622 0.638 0.540 0.000 0.531 0.283 1.212
DT 0.683 0.531 0.857 0.810 0.615 0.642 0.406 0.143 0.469 0.317 1.178
NB 0.650 0.500 0.821 0.762 0.590 0.604 0.336 0.179 0.500 0.350 1.150

ANN 0.717 0.500 0.964 0.941 0.628 0.653 0.514 0.036 0.500 0.283 1.210
LR 0.733 0.500 1.000 1.000 0.636 0.667 0.564 0.000 0.500 0.267 1.225

KNN (k = 3) 0.683 0.438 0.964 0.933 0.600 0.596 0.463 0.036 0.563 0.317 1.184

Liver
function

tests

SVM 0.417 0.625 0.179 0.465 0.294 0.533 0.217 0.821 0.375 0.583 0.896
DT 0.450 0.656 0.214 0.488 0.353 0.560 0.143 0.786 0.344 0.550 0.933
NB 0.483 0.250 0.750 0.533 0.467 0.340 0.000 0.250 0.750 0.517 1.000

ANN 0.617 0.500 0.391 0.696 0.568 0.582 0.257 0.250 0.500 0.383 0.944
LR 0.500 0.625 0.357 0.526 0.455 0.571 0.018 0.643 0.375 0.500 0.991

FDT 0.650 0.438 0.893 0.824 0.581 0.571 0.366 0.107 0.563 0.350 1.154
KNN (k = 3) 0.617 0.688 0.536 0.629 0.600 0.657 0.226 0.464 0.313 0.383 1.106

Diseases

SVM 0.657 0.313 0.857 0.714 0.522 0.435 0.200 0.143 0.688 0.433 1.082
DT 0.483 0.375 0.607 0.522 0.459 0.436 0.018 0.393 0.625 0.517 0.991
NB 0.600 0.500 0.714 0.667 0.556 0.571 0.218 0.286 0.500 0.400 1.102

ANN 0.567 0.406 0.750 0.650 0.525 0.500 0.165 0.250 0.594 0.433 1.075
LR 0.533 0.406 0.679 0.591 0.500 0.481 0.088 0.321 0.594 0.467 1.041

KNN (k = 3) 0.517 0.469 0.571 0.556 0.485 0.508 0.040 0.429 0.531 0.483 1.020
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Figure 6. A comparison between CA and FM for base classifiers using wrapper FS (part 1).

Figure 7. A comparison between CA and FM for base classifiers using wrapper FS (part 2).

FDT had the best performance for the liver function tests, with 65% CA and 57.1% FM. Finally,
SVM had the best performance for the diseases sub-dataset, at 65.7% CA and 43.5% FM. All of these
evaluations are based on the wrapper FS technique and 10-fold cross-validation.

From the previous comprehensive evaluations in Tables 2 and 3, we determined the optimum
base classifier and the most suitable features for every sub-dataset. FM has a higher priority than other
metrics because it is used as the weight of each base classifier. Table 4 lists the utilized base algorithms,
their selected features, and their weights for the nine datasets.

Table 4. The proposed ensemble classifier’s base algorithms and their weights.

No. Dataset Base Algorithm FS Technique Weight (FM)

1 Demographics SVM Wrapper 74.4
2 Sugar lab tests DT Correlation FS 90.6
3 Hematological profiles LR Correlation FS 71.2
4 Symptoms ANN Correlation FS 60.3
5 Kidney function Lab tests DT Wrapper 69.6
6 Lipid profile ANN Wrapper 66.7
7 Urine analysis LR Wrapper 74.4
8 Liver function tests FDT Wrapper 57.1
9 Diseases ANN Correlation FS 46.2
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5.2.3. The Proposed Ensemble Evaluation

To evaluate the proposed algorithm, we utilized WEKA’s JAVA APIs to customize the
implementation process according to the results in Table 4. The proposed framework achieved
the best overall performance for overall base classifiers. The framework has a recall of 0.902, CA of
0.900, specificity of 0.895, precision of 0.949, NPV of 0.810, FM of 0.925, FPR of 0.105, FNR of 0.098, ER
of 0.100, MCC of 0.778, and GM of 1.341.

These results are very logical because when we decide who has diabetes, we take all of the patient’s
profile into consideration. For example, we can see that the level of glucose in the blood can provide
accurate results in the diagnosis process; but medically, there are many reasons other than diabetes for
an increase in glucose level in the blood.

As a result, taking a decision based on the level of glucose only seems to provide inaccurate results.
At the time of diagnosis, patients with diabetes often have complications so that these complications
can add value to the diagnosis process. This is exactly what we do in this framework.

The patient’s symptoms, demographics, diseases, liver tests, kidney tests, lipid profile, and urine
analysis are considered in the diagnosis process.

The proposed ensemble classifier achieves this performance as a result of several steps: (i) the
dataset is completely preprocessed; (ii) the whole dataset is medically divided into correlated features;
(iii) the most suitable base classifier is selected for each sub-dataset; (iv) the best feature vector is
selected for each base classifier in an accurate way; and (v) the base classifiers are weighted based on
FM, which is the harmonic mean of precision and recall.

Performance of the proposed ensemble was compared with the average performance of single
classifiers in Tables 2 and 3. Figure 8 illustrates that our framework outperforms all of the base
classifiers, including the CFS-based and wrapper-based algorithms. Regarding the computational
complexity of the proposed classifier, its complexity is Oproposed = max(OSVM + OKNN + ONB + ODT +

OFDT + OANN + OLR) because it runs the base algorithms in parallel. Because m < n, OSVM is the
largest complexity. As a result, the Oproposed is equal to n3.

Figure 8. Comparison between the proposed framework and average results of base classifiers.

To compare the proposed ensemble with the other ensembles, we evaluated a set of meta-classifiers,
including homogeneous ensembles (i.e., bagging, boosting, and RF) and heterogeneous ensembles
(i.e., voting and stacking) for every sub-dataset by using CFS. We created 45 meta-classifiers (i.e.,
five classifiers for nine datasets). These simple ensembles failed to improve overall performance.
For example, in the demographics dataset, the base classifier SVM in Table 3 achieves performance
similar to all ensemble algorithms for the same dataset in Table 5. For each sub-dataset, we used
the most suitable setting for the meta-classifier. For example for the demographic dataset, we use
DT for the bagging technique; four classifiers (LR, SVM, NB, and DT) used majority voting for
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the voting technique; and AdaboostM1 utilized LR. These settings achieved the best performance
for meta-classifiers.

Table 5. Classification results for ensemble classifiers with correlation-based feature selection.

Sub-Dataset Algorithm CA Se Sp PPV NPV FM MCC FPR FNR ER GM

Demographics

RF 0.617 0.719 0.500 0.622 0.609 0.667 0.224 0.500 0.281 0.383 1.104
Bagging 0.667 0.781 0.536 0.658 0.682 0.714 0.328 0.464 0.219 0.333 1.147
Voting 0.650 0.688 0.607 0.667 0.630 0.677 0.295 0.393 0.313 0.530 1.138

Stacking 0.567 0.500 0.643 0.615 0.529 0.552 0.144 0.357 0.500 0.433 1.069
AdaBoostM1 0.700 0.781 0.607 0.694 0.708 0.735 0.396 0.393 0.219 0.300 1.178

Sugar lab
tests

RF 0.867 0.844 0.893 0.900 0.833 0.871 0.735 0.107 0.156 0.133 1.318
Bagging 0.867 0.875 0.857 0.875 0.857 0.875 0.732 0.143 0.125 0.133 1.316
Voting 0.867 0.875 0.857 0.875 0.857 0.875 0.732 0.143 0.125 0.133 1.316

Stacking 0.850 0.844 0.857 0.871 0.828 0.857 0.700 0.143 0.156 0.150 1.304
AdaBoostM1 0.867 0.844 0.893 0.900 0.833 0.871 0.735 0.107 0.156 0.133 1.318

Hematological
profiles

RF 0.617 0.750 0.464 0.615 0.619 0.676 0.224 0.536 0.250 0.383 1.102
Bagging 0.633 0.750 0.500 0.632 0.636 0.686 0.259 0.500 0.250 0.367 1.118
Voting 0.617 0.750 0.464 0.615 0.619 0.676 0.224 0.536 0.250 0.383 1.102

Stacking 0.533 0.563 0.500 0.563 0.500 0.563 0.063 0.500 0.438 0.467 1.031
AdaBoostM1 0.650 0.813 0.464 0.634 0.684 0.712 0.297 0.536 0.188 0.350 1.130

Symptoms

RF 0.567 0.531 0.607 0.607 0.531 0.567 0.138 0.393 0.469 0.433 1.067
Bagging 0.500 0.563 0.429 0.529 0.462 0.545 0.009 0.571 0.438 0.500 0.996
Voting 0.517 0.531 0.500 0.548 0.483 0.540 0.031 0.500 0.469 0.483 1.015

Stacking 0.467 0.563 0.357 0.500 0.417 0.529 0.082 0.643 0.438 0.533 0.959
AdaBoostM1 0.533 0.594 0.464 0.559 0.500 0.576 0.058 0.536 0.406 0.467 1.029

Kidney
function lab

tests

RF 0.400 0.344 0.464 0.423 0.382 0.379 0.193 0.536 0.656 0.600 0.899
Bagging 0.417 0.563 0.250 0.462 0.333 0.507 0.196 0.750 0.438 0.583 0.902
Voting 0.483 0.906 0.000 0.509 0.000 0.652 0.215 1.000 0.094 0.517 0.952

Stacking 0.550 0.750 0.321 0.558 0.529 0.640 0.079 0.679 0.250 0.450 1.035
AdaBoostM1 0.517 0.969 0.000 0.525 0.000 0.681 0.122 1.000 0.031 0.483 0.984

Lipid
profiles

RF 0.650 0.906 0.357 0.617 0.769 0.734 0.319 0.643 0.094 0.350 1.124
Bagging 0.533 0.750 0.286 0.545 0.500 0.632 0.040 0.714 0.250 0.467 1.018
Voting 0.600 0.875 0.286 0.583 0.667 0.700 0.200 0.714 0.125 0.400 1.077

Stacking 0.583 0.781 0.357 0.581 0.588 0.667 0.153 0.643 0.219 0.417 1.067
AdaBoostM1 0.633 0.969 0.250 0.596 0.875 0.738 0.321 0.750 0.031 0.367 1.104

Urine
analysis

RF 0.667 0.500 0.857 0.800 0.600 0.615 0.378 0.143 0.500 0.333 1.165
Bagging 0.667 0.500 0.857 0.800 0.600 0.615 0.378 0.143 0.500 0.333 1.165
Voting 0.683 0.531 0.857 0.810 0.615 0.642 0.406 0.143 0.469 0.317 1.178

Stacking 0.583 0.406 0.786 0.684 0.537 0.510 0.206 0.214 0.594 0.417 1.092
AdaBoostM1 0.667 0.500 0.857 0.800 0.600 0.615 0.378 0.143 0.500 0.333 1.165

Liver
function

tests

RF 0.500 0.500 0.500 0.533 0.467 0.516 0.000 0.500 0.500 0.500 1.000
Bagging 0.533 0.250 0.857 0.667 0.500 0.364 0.134 0.143 0.750 0.467 1.052
Voting 0.550 0.438 0.679 0.609 0.514 0.509 0.119 0.321 0.563 0.450 1.057

Stacking 0.517 0.531 0.500 0.548 0.483 0.540 0.031 0.500 0.469 0.483 1.015
AdaBoostM1 0.533 0.250 0.857 0.667 0.500 0.364 0.134 0.143 0.750 0.467 1.052

Diseases

RF 0.500 0.406 0.607 0.542 0.472 0.464 0.014 0.393 0.594 0.500 1.007
Bagging 0.533 0.531 0.536 0.567 0.500 0.548 0.067 0.464 0.469 0.467 1.033
Voting 0.550 0.406 0.714 0.619 0.513 0.491 0.126 0.286 0.594 0.450 1.058

Stacking 0.483 0.500 0.464 0.516 0.448 0.508 0.036 0.536 0.500 0.517 0.982
AdaBoostM1 0.600 0.500 0.714 0.667 0.556 0.571 0.218 0.286 0.500 0.400 1.102

We evaluated the above ensemble classifiers based on the wrapper FS technique; however, they
provided results somewhat comparable to the CFS technique. Figure 9 shows a comparison between
the proposed classifier and the maximum values of the five ensembles in Table 5. As we can see, the
proposed ensemble achieves overall improved performance and low error rates. At the same time,
these results are medically acceptable and get high confidence from physicians, because all of the
patient’s characteristics are included in the decision-making process. As a result, the proposed method
can be applied in similar problems to provide classifiers of other diseases. We work very closely with
two medical experts to prepare and implement this study. The domain experts validated the collected
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datasets, guided in data preprocessing and understanding the disease intuition, and tested the final
system. In addition, the results of the system have been validated by domain experts.

Figure 9. A comparison between the proposed ensemble and maximum results of other ensembles.

Although the proposed model achieves promising results, it has some limitations that will be
handed in future work. For example, the model has not been tested on other datasets. The available
public diabetes datasets (e.g. PIDD) are not multimodal data. They have not clearly separated
groups of features to be used as complementary multimodal data in the proposed model. Further, the
proposed model has not handled the semantic relations between medical concepts such as diseases
and symptoms. This issue can be handled using semantic data mining techniques by embedding
ontology reasoning in the learning process. In addition, as diabetes is a chronic disease, it is normal
to find many readings for each feature in different time. These data could be collected from sensors
connected to the patient body [72]. These temporal data need special analysis, which can benefit in
remote patient monitoring.

6. Conclusions

This paper proposed a heterogeneous ensemble classifier to improve disease detection accuracy.
The proposed classifier was applied to a serious chronic disease: DM. To take best advantage of single
classifiers for designing the proposed classifier and to produce better results than any of the single
classifiers, we first selected a set of diverse, well-known, and heavily applied algorithms in the medical
field: SVM, FDT, ANN, NB, LR, DT, and KNN. Second, we used two well-known feature selection
techniques (CFS and wrapper FS) to select the most suitable features for every algorithm with every
sub-dataset. Third, we trained all algorithms with all the preprocessed sub-datasets. Finally, we built
the proposed algorithm using the base classifiers with the best results. The proposed ensemble was
evaluated and tested. It achieved a recall of 90.2%, CA of 90%, specificity of 89.5%, precision of 94.9%,
NPV of 81%, FM of 92.5%, FPR of 10.5%, FNR of 9.8%, ER of 10%, MCC of 77.8%, and GM of 1.341.

These results outperformed the average performance of base classifiers and other ensembles.
This study has demonstrated that a well-designed heterogeneous ensemble classifier can be more
accurate than any other classifier in disease detection; herein lies the main contribution of this study.
In future work, we will extend the proposed ensemble to handle the semantic aspects of medical data.
There is a possibility of using an OWL ontology and description logic semantics to achieve this goal.
In addition, because diabetes is a chronic disease, it is critical to handle time dimensions in the patient
data. Based on the promising results of the proposed framework, we will check it with other datasets
and for diagnosis of other diseases. Analyzing the clinical “omics” data is very critical in clinical
domain especially for disease treatment (http://omics.org/). In the future, we will study the relationship
between diabetes and taken drugs based on the integration of regular medical data and genomic data.
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