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ABSTRACT
The prevalence of Alzheimer’s disease (AD) in the growing elderly population makes accurately
predicting AD progression crucial. Due to AD’s complex etiology and pathogenesis, an effective
and medically practical solution is a challenging task. In this paper, we developed and evaluated
two novel hybrid deep learning architectures for AD progression detection. These models are
based on the fusion of multiple deep bidirectional long short-term memory (BiLSTM) models.
The first architecture is an interpretable multitask regression model that predicts seven crucial
cognitive scores for the patient 2.5 years after their last observations. The predicted scores are
used to build an interpretable clinical decision support system based on a glass-box model. This
architecture aims to explore the role of multitasking models in producing more stable, robust,
and accurate results. The second architecture is a hybrid model where the deep features ex-
tracted from the BiLSTM model are used to train multiple machine learning classifiers. The
two architectures were comprehensively evaluated using different time series modalities of 1371
subjects participated in the study of the Alzheimer’s disease neuroimaging initiative (ADNI).
The extensive, real-world experimental results over ADNI data help establish the effectiveness
and practicality of the proposed deep learning models.

1. Introduction
Alzheimer’s disease (AD) is a neurodegenerative chronic brain disorder that results in progressive memory loss and

cognitive impairment. Worldwide, 50 million patients have dementia [1]. By 2030, the number of dementia patients is
expected to reach 75.6 million, and by 2050 the number of patients will reach 135.5 million [2]. Dementia is one of the
extortionate diseases costing $604 billion worldwide in 2010, AD patients make up 60-80% of all dementia patients
[3]. Caregiving to AD patients is a heavy physical and emotional burden on families and friends. In 2014, caregivers
provided 17.9 billion hours of unpaid care to AD patients at a cost of about $217.7 billion in just the U.S. [4]. AD
pathology occurs several years before the onset of clinical symptoms, which makes the disease hard to detect in its early
stages [5]. Mild cognitive impairment (MCI) is considered an AD prodromal phase, where the progression rate from
MCI to AD is at an annual rate of 10-25% [6]. There are two types of MCI, i.e., stable MCI (sMCI) and progressive
MCI (pMCI). pMCI patients convert to AD after a certain period of time, but sMCIs patients do not convert. As
AD currently cannot be cured or prevented, early detection of possible pMCI progression, before the occurrence of
irreversible brain damages, is of tremendous importance for preventive care, it helps inform personalized medicine
and ultimately gives a better quality of life. However, this task is tough due to the high subjectivity and instability in
individual patient’s cognitive markers and neuroimaging biomarkers. Machine learning (ML) techniques have been
widely used to tackle this challenge [6, 7, 8, 9, 10]. Some studies have surveyed the recent ML techniques for AD
progression prediction [11, 12, 13].
1.1. Complexity of AD progression detection

Applying ML to AD progression modeling is a complex process for several reasons. First, AD data are naturally
multimodal data [3, 11, 14] where each patient has a collection of complementary pieces of different types includ-
ing magnetic resonance imaging (MRI), positron emission tomography (PET), neuropsychological battery, vital signs,
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cognitive scores (CSs), medical history, genetics, cerebrospinal fluid (CSF), lab tests, physical examinations, symp-
toms, neurological examination, and demographics. These heterogeneousmodalities carry complementary knowledge,
which describes the disease status from different viewpoints [15]. For example, CSF and PET are the most appropri-
ate for detecting the accumulation of amyloid-� in the brain years before disease-related structural changes can be
detected, on the other hand, an MRI is more sensitive to changes after the first symptoms appear. Moreover, medical
history, including age and number of years education; CSs including MMSE, ADAS-cog, CDRSB, FAQ, etc.; and
neuropsychological battery features such as RAVLTs have shown to be significant factors in predicting AD progres-
sion [15, 10, 16, 17, 18]. However, most AD studies concentrate on MRI analysis [13, 19, 20, 21]. Although MRI
is critical for AD detection, it is its fusion with other modalities that could provide a holistic picture of a patient’s
status and could potentially enhance the accuracy of a progression model. This fusion reduces noise by averaging it
out over a number of independent data sources. Furthermore, multimodal systems usually yield more comprehensive
insights, more precise results, more reliable behaviors, and accordingly more acceptance from the medical community
[22, 23, 24, 25]. However, how to effectively fuse information from heterogeneous sources remains a challenge. This
approach is known as multimodal design. Forouzannezhad et al. [26] used a Gaussian-based model to predict MCI
based on demographics, PET, and MRI data, they achieve an accuracy of 78.8%. Second, most AD data are collected
over time (i.e. longitudinal or time-series data), which indicates that the disease state at a certain time is dependent on
the state at a previous point in time. Therefore, to study the relative longitudinal changes in AD, we must trace patho-
physiological changes over a huge number of observations [14]. However, the vast majority of the research does not
explore AD’s temporal/sequential nature [12]. Accordingly, the AD investigations in previous literature did not analyze
any correlation among multimodal signals and how they evolve over time [27]. Traditional time series algorithms have
been applied in AD progression, but these techniques have their own limitations [28, 29]. Third, to accurately predict
AD progression, it is critical to monitor multiple features at the same time in what is called multitask modeling [14].
Various efforts have been made in AD multitask modeling, these efforts generally fall into one of multiple categories,
including single-modal single-task classification [6] and regression [7] learning, single-modal multitask regression
learning [8], as well as multimodal single-task classification [9] and regression [10] learning. Going a step further and
considering several modalities and predicting multiple clinical variables that would be required by a medical expert
to assess a patient, this is called multimodal multitask learning, where a task has multiple input sources, and all tasks
are related in a chronological sequence [17, 30, 31, 32]. Modeling AD progression as a multimodal multitask process
based on time series data is a challenge [33]. However, recent studies have asserted that this modeling of AD related
tasks has delivered promising performance and is more stable than other models [14, 30]. Zhang et al. [15] proposed
a general method called multimodal multitask (M3T) learning to concurrently predict multiple medical scores (i.e.
MMSE, ADAS, and diagnosis feature) by combining multimodal data (i.e. MRI, PET, and CSF). They used SVMs
and baseline data from a small number of modalities. Recently, Ding et al. [17] found that most AD studies consider
a limited number of features, which are potentially inadequate to understand this complex disease. Yet, despite much
ongoing research, predicting AD progression is still a challenge [14]. Deep learning (DL) can enhance the performance
of this complex modeling task [34]. However, few studies have explored the role of DL in AD prediction based on
time series multimodal multitask data.
1.2. Deep learning based AD prediction

Regular ML has been used in previous literature to predict AD progression. Lu et al. [6] utilized Fluorodeoxyglu-
cose PET (FDG-PET) functional imaging to identify cognitively normal (CN) subjects who will convert to MCI early.
The authors built a binary classifier using an incomplete RF–robust SVM approach and achieved 90.53% accuracy.
Zhang et al. [3] provided a survey of the predictions from pMCI conversion studies. Existing studies depended on
a limited number of biomarkers, which could be insufficient to provide a complete interpretation of the disease. For
example, Liu et al. [9] built their model based on MRI and CSF modalities only. Furthermore, most studies currently
neglect any temporal dependency within the feature series and across the different features and instead focus on cross-
sectional data. Cho, et al. [35] used the ADNI data to predict probable AD conversion using single baseline MRI
scans. Moreover, most AD progression studies are classification problems, i.e. categorizing patients into a particular
category (e.g. CN, MCI, or AD). Few studies have formulated the problem as a regression task [36, 37, 38], also these
models fitted logistic or polynomial functions to the longitudinal dynamics of each biomarker separately. These studies
have mostly relied on independent biomarker modeling, and no study has considered the temporal dependencies among
features [39]. Solving these issues using regular ML classifiers has critical limitations, especially when it comes to
learning multiple tasks by fusing many time series modalities together [14]. DL techniques have demonstrated promis-
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ing prediction results in several areas [40, 41]. These techniques are based on recurrent neural networks (RNN) or CNN
architectures, which are powerful and can extract deep longitudinal features from fused multivariate time series data
[21, 27, 42]. Tabarestani et al. [43] used two variations of an RNN, namely a long short-term memory (LSTM) and
a gated recurrent units (GRU), to predict the patient’s status for the next three time points using the previous three
historical time points. Alternatively, several studies have formulated AD progression detection as a regression task
based on CSs [17, 18] considering the fact that CSs are highly predictive factors for AD progression [31, 44]. For ex-
ample, Ding et al. [17] used CDR as an index of AD severity to build a Bayesian network model for AD classification
using the AIBL longitudinal dataset. Frisoni et al. [45] found a strong correlation between MRI features and those
scores. Most regression studies have focused on predicting one score, based on regular ML algorithms such as SVMs
and RF [11, 15, 22, 46, 47, 48]. Some studies have set up MCI progression as a multimodal single-task regression
model, where one CS as MMSE or ADAS-Cog is used as an indicator for AD progression [10, 16]. Recently, Yagi et
al. [49] concluded that each CS marker has its limitations, and predicting AD progression based on multiple CSs is
medically intuitive and more accurate. Recent works on AD prediction and progression have formulated the problem
as a multitask problem, here the model optimizes a multi-objective cost function. Simultaneously learning for multiple
related tasks has been proven to perform better than learning for single tasks separately [11, 15]. DL techniques are
more accurate for jointly learning multiple tasks [34]. In the context of AD, Wang et al. [11] began the trend in AD
progression modeling towards DL, multitask, and time series analysis. Liu et al. [30] presented a CNN-based model
for concurrently learning the AD diagnosis and CSs regression. Choi et al. [50] also proposed a CNN-based model
to detect pMCI patients using their PET images as a single-task model. A multimodal single task classification model
was proposed by Spasov et al. [42], where authors utilized the CNN to detect AD progression. In their work, authors
combined MRI, demographic, neuropsychological, and APOE e4 genetic data in a late fusion process to do classifica-
tion. Most Alzheimer’s DL models use CNN models with a single (baseline) MRI scan [18], but these models are less
accurate and not medically acceptable [17]. Wang et al. [21] proposed an LSTM-based regression model to predict
AD progression based on time series data with non-uniform visit time intervals. Liu et al. [30] proposed a CNN-based
model for AD diagnosis and predicting clinical scores. Their model fused MRI data and demographic features of only
the baseline visits. Most of the recent Alzheimer’s DL models are based on the CNN and consider the baseline MRI
scans [18]. Usually medical experts accumulate longitudinal multimodal patient data before making any progression
decisions. Therefore, models that only depend on baseline data of the patient are less accurate, less sufficient, and
not medically acceptable [17]. Furthermore, most DL models proposed for the AD diagnosis and progression are for-
mulated as binary classification problems, and multiclass fine-grained models are still far from achieving satisfactory
results that can be applied clinically [51]. Moreover, DL needs a huge dataset to fit models properly and given the
small datasets available in the AD domain, DL is prone to overfitting. DL models are a black-box, and these models
that are not interpretable are less acceptable in the medical domain.
1.3. The study hypotheses

The goal of our study is to answer the following research questions: (1) Can the use of fused multimodal time series
data and a deep LSTM-based model lead to more accurate prediction of AD progression? (2) Does the joint learning
of multiple regression tasks generate a more robust and stable DL model? (3) Does a hybrid model - consisting of a
deep learning model for feature learning and an ML model for classification - improve the overall performance of the
AD progression detection? (4) As cognitive scores are crucial for AD progression detection, is it possible to predict
the future values of a set of cognitive scores and use them to predict AD progression? (5) Does the resulting model
become more explainable than the black-box DL models? (6) What is the most important category of MRI features
(e.g. volume, cortical thickness, temporal, etc.) in terms of contributing to the most accurate predictions? To the best
of our knowledge, there is no current study in the AD domain that critically analyzes these questions. To answer these
questions, extensive experiments were carried out based on the AD neuroimaging initiative (ADNI) dataset of 1371
subjects. In this study, we propose a hybrid DL model (HDL) to help overcome the current limitations of DL-based
models for AD prediction. The HDL model predicts AD progression after 2.5 years (i.e. at month 48) based on the
patient’s multimodal time series data from baseline (BL), month 6 (M06), month 12 (M12), and month 18 (M18). The
proposed DL model can be used to directly predict AD patients at M48 as a multiclass classification task. This kind of
outcome is poorly predicted by simple DL models as shown later in the results section. In the proposed HDL model, a
multivariate BiLSTMmodel is used for deep feature representation learning, and a regular ML model such as decision
tree (DT), random forest (RF), or support vectormachine (SVM) is used for the classification task. We call this approach
deep feature-based learning (DFBL). BiLSTM is a powerful technique for extracting dynamic dependence relationships
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from longitudinal features, especially from complex and heterogeneousmultivariate time series. However, the resulting
architecture is complex, and adding Softmax classification to this architecture has certain limitations. In an alternative
approach, our DFBL adopted both DL and regular ML models that were trained concurrently. The DL model extracts
the deep features from the multimodal data, and these features are used to train the regular machine learning model.
This paradigm has been used in other literature to explore the idea of replacing the usual Softmax classifier with other
ML classifiers such as SVM or RF. Remarkably, this design has achieved better results than the model it replaced
[52, 53, 54]. In the context of AD, Zhu et al. [55] extracted representative features from the volume of the gray matter
data using a discriminative self-representation sparse regression, these extracted features are fed into an SVM classifier
to make the prediction. In [51], Amoroso et al. combined RF for feature extraction and a feed-forward neural network
for classification. Lin et al. [56] utilized a CNN along with PCA-LASSO to extract deep features from MRI data, then
used SVM to classify the disease. These studies are based on a single modality (i.e. MRI) of a single visit (i.e. no time
series), which have several limitations [57]. Unlike the previous literature, we fuse the four time-series modalities from
neuropsychological battery markers, CSs sub-scores, MRI, and FDG-PET biomarkers. These modalities are popular
in the AD domain [58]. These modalities are fused using a deep BiLSTM model.

We also propose in the study another paradigm called multitask regression-based learning (MRBL) to check the
multitask learning capability of the proposed DL models. In the first phase of this design, a multivariate BiLSTM
model is used to jointly learn seven regression tasks; then, in the second phase, a regular ML model is used to learn the
multiclass AD progression classification based on the predicted CSs and patient demographics. The seven regression
tasks are used to predict seven of themost accurate and popular CSs in the AD domain (i.e. ADAS 13, MMES, CDRSB,
MOCA, RAVLT, FAQ, ADNI MEM, and RAVLT) [14, 29, 58, 59]. The multitask paradigm works as a regularizer
for the seven tasks to efficiently train a DL model than single-task models. CS markers are robust predictors for AD
progression [18, 44, 60]. In other words, based on the temporal changes of CSs, it is possible to predict AD progression
quite accurately. In real-world practice, medical experts always rely on CSs to make these decisions [5]. Most previ-
ous studies have predicted a single cognitive score using either the multimodal or multitask paradigm based on regular
ML techniques [8]. In addition, most of these studies are based on a small number of modalities and use only base-
line data [60], they used these predicted values as an indicator for AD progression. Our model jointly predicts seven
scores based on a deep LSTM model and multimodal time-series data. This includes multiple longitudinal modalities
and simultaneously predicts multiple CSs that might help explain and more accurately predict AD progression [5].
Multitask learning assumes that different tasks have common representation space. Multimodal learning analyzes how
multiple sets of clinical data can be merged longitudinally to extract more abstract features on AD progression. In other
words, multiple tasks share features from multimodalities to jointly model correlation among outcomes and optimize
a multi-objective cost function. In a medical environment, expert users never accept a computerized clinical decision
support system unless they understand why and how a certain recommendation is given [61]. In our case, the MRBL
improves the interpretability of the DL model. Using an easy to interpret model such as DT in the second phase of
MRBL produces an easy to interpret recommendation [62, 63]. The resulting explanation is much accurate than using
interpretable models to explain the behavior of DL. In the current design, the interpretable model is created based on
CSs features learned by the DL model. To extend this idea, we explore two interpretable fuzzy classifiers which are
based on Fuzzy Logic (FL), including the fuzzy unordered rule induction algorithm FURIA [29] and a multi-objective
evolutionary fuzzy classifier (MOEFC) [61]. To select the best scores, we study the correlation between all CSs and
AD progression by using suitable statistical analysis tools and select the highest correlated scores. In addition, the
best set of modalities, with the most suitable set of features, was selected and used by the BiLSTM model. In both
MRBL and DFBL, each modality is learned by a separate BiLSTMmodule to extract deep longitudinal features. After
extracting longitudinal features from every modality using a separate LSTM model, we use the late fusion technique
based on BiLSTM to extract any complementary features from different modalities jointly. From these, the four mod-
ules are fused and learned again with another deep BiLSTM module. Predicted makers are integrated with the most
progression sensitive baseline features to further predict the exact M48 diagnosis (CN vs. MCI vs. AD). By comparing
the classification at M18 with M48, we can determine the progress MCI patients within the 2.5 years from M18. To
the best of our knowledge, these explored design paradigms have not been studied in the AD domain, especially for
progression detection. As brain atrophy from ADmay start as early as twenty years prior to symptoms [57], analysis of
MRI data is critical to AD prediction. However, most previous studies have concentrated on exploring the predictive
power of specific MRI measures for AD predicting such as hippocampal atrophy, volumetric abnormality, temporal
atrophy, cortical thickness abnormality, etc. [13, 59, 64, 65]. As a method of feature selection, we explore the role of
different categories of MRI features, in combination with other modalities, on the models’ performance.
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To sum up, our study makes the following contributions:
• Wepropose two novel hybridDLmodels to tackle the current limitations of DL-basedmodels for ADprogression

prediction. Our model predicts AD progression 2.5 years later (i.e. at month 48) based on the patient’s partial
or entire multimodal time series data from the previous 18 months.

• The first HDL model, called DFBL, uses a multivariate BiLSTM architecture for deep feature representation
learning, and a regular ML model such as DT, RF, SVM, or FL for the AD prediction task.

• The second HDL model, called MRBL, has two main phases. In the first phase, it uses a multivariate BiLSTM
model to jointly learn seven regression tasks; then, in the second phase, a regular ML model is used to learn the
multiclass AD progression (CN vs. MCI vs. AD) based on the predicted CSs from the first stage.

• Comprehensive evaluations were conducted based on data from 1371 subjects collected from the ADNI. We
explored a set of DL and ML techniques, such as SoftMax classifier, RF, SVM, DT, general model (GM),
FURIA, and MOEFC.

• Broad performance comparisons were carried out to show i) the effect of the included time-series data, when
(1) using all of the patient’s data (four time-steps), (2) using the BL visit data, and (3) using the M18 visit data,
ii) the effect of applying a single and multitask approach for the MRBL model, iii) the effect of using BiLSTM
architecture against using only flattening time-series data with a conventional DL architecture, and iv) the role
of fusing different MRI feature spaces with other modalities to reduce noise and improve the performance.

The remainder of the paper is organized as follows. Section 2 presents the methods and techniques used in our architec-
ture for deep feature representation and classification. Section 3 presents the details of the proposed hybrid model. The
experimental framework that explains the flow of the comprehensive experiments in this paper is provided in Section
4. The results and discussion are presented in Section 5. Finally, Section 6 concludes the paper.

2. Methods
In this section, we introduce the main techniques adopted in our proposed architecture such as LSTM, BiLSTM,

and ML algorithms that were optimized to work as classifiers for AD progression detection.
2.1. Long short-term memory

LSTM is a powerful technique to detect patterns in time series and sequential data. However, the number of studies
exploiting LSTM for AD multimodal longitudinal data analysis is still limited. AD data from each time point is corre-
latedwith the data from the preceding and following time points. To fully capture the temporal variations in correlations
of AD data, we apply the BiLSTM, which consists of a forward LSTM (i = 1,⋯,n) and a backward LSTM (i = n,⋯,1).
The BiLSTM networks are used in two positions. First, modalities, i.e. X ∈ {XPET , XMRI , XCSD, XNPD, XASD}are trained separately by BiLSTM subnetwork. We have five modalities, so we have five two-layer BiLSTM networks
trained concurrently and independently to capture the temporal features within single features and among features of
different modalities. Second, the learned features from these five networks are fused and learned using another two-
layer BiLSTM network to extract the common features among different modalities. Figure 1 represents the BiLSTM
network used to fuse different modalities.

For each time point, the outputs of the forward and backward BiLSTMs are concatenated to form the output of the
BiLSTM at that time point, see Figure 2. We add two BiLSTM layers to efficiently process and summarize longitudinal
data of each modality separately. Since the patient time series are only 4 steps, the two layers do not increase the
computation loads. The LSTM cell structure consists of three gates: the input gate (itn ), forget gate (ftn ), and output
gate (otn ). These gates are used to regulate information contained in the cell state. Ctn , Ctn−1 and Ĉtn are the cell
status contents at the time tn, the cell status value of the last time step, and the update of the current cell status value,
respectively. ℎtn−1 is the value of a memory cell in the hidden layer at the tn−1 time step. ℎtn is the output value
of a hidden layer at the time tn derived from Ĉtn and Ctn−1 . The calculated weight matrices and biases vectors are
represented as �s and b, respectively. These are updated following the back propagation algorithm. ⊗ is the Hadamard
product; ⊗ is the concatenation operator; � is the logistic sigmoid function; � is the activation function output, e.g.
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Figure 1: BiLSTM-based faramework for time series data learning and multitask progression prediction.

Figure 2: The architecture of the proposed LSTM layer for AD prediction.

SoftMax, ReLU , or T anℎ. The eqs. (1) to (7) represent the flow of information in an LSTM memory cell at each
step.

ftn = �
(

�f ∙
[

ℎtn−1 , xtn
]

+ bf
)

(1)

itn = �
(

�i ∙
[

ℎtn−1 , xtn
]

+ bi
)

(2)

Tamer ABUHMED et al.: Preprint submitted to Elsevier Page 6 of 29



Abuhmed et al./Knowledge-Based Systems

C̃tn = tanℎ
(

�C ∙
[

ℎtn−1 , xtn
]

+ bC
)

(3)

Ctn =
(

ftn ⊗ C tn−1 ⊕ itn ⊗ C̃tn
)

(4)

otn = �
(

�o ∙
[

ℎtn−1 , xtn
]

+ bo
)

(5)

ℎtn = otn ⊗ tanh
(

Ctn
)

(6)

yn = '(�yℎtn + by) (7)
The LSTM unit captures information related to the previous input sequence in a time series but does not capture the
relation between future and previous sequences. BiLSTM [66] merge two independent hidden LSTM layers in the
forward and backword directions into the same output to learn the overall dependencies in a time series. BiLSTM
gets an input sequence, X = (Xt0, Xt1, … , Xtn), in a forward hidden sequence as in the conventional LSTM, ⃖⃗ℎt =
( ⃖⃗ℎt0, ⃖⃗ℎt1,… , ⃖⃗ℎtn), and a backward hidden sequence in the opposite direction, ⃖⃖ℎt = (⃖⃖ℎt0, ⃖⃖ℎt1,… , ⃖⃖ℎtn). The output
vector of a hidden layer yt = (yt0, yt1,… , ytn), t = 1, 2..t is the combination of ⃖⃗ℎt and ⃖⃖ℎt, yt = [ ⃖⃗ℎt, ⃖⃖ℎt], as shown in
Equations (8) to (11).

⃖⃗ℎtn = �
(

�ℎ⃗n ∙
[

⃖⃗ℎtn−1 , xtn
]

+ bℎ⃗n

)

(8)

⃖⃖ℎtn = �
(

�ℎ⃖n ∙
[

⃖⃖ℎtn−1 , xtn
]

+ bℎ⃖n

)

(9)

(

⃖⃗ℎt0, ⃖⃖ℎt0
)

…
(

⃖⃗ℎtn, ⃖⃖ℎtn
)

= BiLSTM(Xt0, Xt1, … , Xtn) (10)

yt = �
(

�ytℎ⃗n
⃖⃗ℎtn + �ytℎ⃖n

⃖⃖ℎtn + byt
)

(11)
The output of a BiLSTM yt is fed to the next hidden layer. The output yt from the former layer is fed as an input to
the later layer, see Figure 1. Since the time series of our study are not long, the computation load of the two BiLSTM
layers is insignificant.
2.2. Regular machine learning models

Many regular ML algorithms have been optimized to work as classifiers based on either learned deep features from
the LSTM model or the predicted cognitive scores of M48. These models include SVM, RF, DT, Naïve Bayes (NB),
and GM. According to our results, we found that the best model is RF [67]. In addition, fuzzy classifiers are popular
classification approaches especially in the medical domain, because (1) they provide interpretable models based on
linguistic labels in their fuzzy rules, (2) they are able to handle the vague and uncertain nature of medical data, and (3)
they can be trained easier than deep learning models [68, 69]. More details about the regular ML models used can be
found in Supplementary File 2.

3. Proposed learning approach
In this section, we describe the detailed steps of the proposed hybrid multitask LSTM-based models. The model

predicts AD progression at M48 based on four time-steps (BL, M06, M12, and M18). As shown in Figure 1, the inputs
to the system are two types of data, namely four time-series modalities and baseline data. In the first layer, each time
series modality is learned by a deep LSTM module. In the second layer, the learned deep features of the first layer are
Tamer ABUHMED et al.: Preprint submitted to Elsevier Page 7 of 29
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fused and used by another multilayer LSTM module to learn deeper features. The baseline data includes many critical
features collected from the first visit including age, education, TAU, APOE, etc. These data work as background
knowledge in the DL model. These data are learned by using a feed forward neural network (FFNN). Learned features
from the FFNN and second layer of LSTM are fused again and used in the two different ML models. We compare two
design schemes: DFBL and MRBL. In the DFBL design, these fused features are concurrently used to train regular
ML models (RF, DT, SVM, GM, and NB), FL models (FURIA and MOEFC), and a DL model (SoftMax). In the
MRBL design, these fused features are used to train a multitask model. We use the learned deep features to learn seven
regression tasks based on a set of dense layers for each task, as shown in Figure 1. Each regression task is responsible
for predicting one CSs at M48. We create a new dataset of the predicted CSs by adding another three critical features
(i.e. age, gender, and education). The resulting dataset is used to train another multiclass classifier (CN vs. MCI vs.
AD) to predict AD progression at M48. We tested many classifiers for this step including regular ML models (RF, DT,
SVM, GM, and NB), FL models (FURIA and MOEFC), and DL model (SoftMax). The multitask learning process is
formulated as discussed in the next section.
3.1. Multitask LSTM-based modeling

The proposed DL framework is a multimodal multitask model, where the model simultaneously learns relevant
tasks Y based on AD modalitiesM . The modalities setM can be depicted as X={X(1),⋯ , X(M)}, and the tasks to
be leaned represented as Y = {y(1),⋯ , y(T )}, where y(j) = {y(j)1 ,⋯ , y(j)N } is a vector of N values for N subjects. A
modality Xm ∈ X is represented as Xm = {x(m)1 ,⋯ , x(m)i ,⋯ , x(m)N } of N patient examples, where an example x(m)i is
a multivariate time series x(m)i = {x(m)i1t

, x(m)i2t
,⋯ , x(m)ift

}, for t = 1,⋯ , s time-steps and f set of univariate time series.
Each patient i ∈ N is represented as xi = {x(1)i ,⋯ , x(m)i ,⋯ , x(M)

i , y1i , y2i ,⋯ , yTi }, where i = 1,⋯ , N , and y1i is
the label of the first task for the itℎ example. For simplicity, Figure 3 illustrates a single modality for N subjects.
Each modality has four-time steps and M features, that is, input X, and four CSs as regression tasks Y . The model

Figure 3: The structure of each time series modality for the LSTM model.

should optimize shared parameters (�sℎ) and task-specific (�t) parameters, where the parametric hypothesis of each
task is f t (x, �sℎ, �t) ∶ X → y(t), and the task-specific loss functions are t (., .) ∶ y(t) × y(t) → ℝ+. In our proposed
multimodal multitask model, the learning process is a gradient-based multi-objective optimization of task-specific
losses, as shown in Equation 12.

min
�sℎ,

�1,… , �T

L
(

�sℎ, �1,… , �T
)

= min
�sℎ,

�1,… , �T

(

̂1 (�sℎ, �1
)

,… , ̂T
(

�sℎ, �T
)

)

(12)

where ̂t(., .) is a task-specific loss function defined as ̂t (�sℎ, �t) = 1
N
∑

i (f t
(

xi; �sℎ, �t
)

, y(t)i ). Our model
predicts seven regression tasks. The regression tasks are equally treated with the objective function defined in Equation
13, for m, which is the number of �sℎ and �t parameters.

̂t
(

�sℎ, �t
)

= 1
T

T
∑

t=2

1
N

N
∑

i=1

(

y(t)i − ŷ(t)i
)2

+ �
m

m
∑

j=1
�2j (13)
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where the loss function is the mean squared loss for regression, and the added term in the equation is the regularization
term. In this study, the T cognitive scores are exploited in the back propagation algorithm to update weighs of the
BiLSTM layers, and learn afterword the most relevant features in the dense layers. It is worth noting that the DLmodel
can simultaneously optimize multiple tasks if they share inputs [70].
3.2. Data preparation

Prior to the training of the proposed model, several data preparation steps were carried out. The first step is to
determine the best CSs that can be used to predict AD progression at M48. Based on previous literature and our
statistical significance analysis of most CSs (Supplementary File 2), we determined the discriminative power of each
independent score for measuring AD severity. We use the correlation analysis, non-parametric Kruskal-Wallis test, and
probability density function to achieve this task. Selected scores are used as the regression features in the proposed
model. Regarding the multimodal time series data and the baseline data, a set of preprocessing steps is performed to
improve the data quality. These steps include the following:

• In the first step, missing data are handled for both time series modalities and baseline static data. For static
data, all features with more than 30% missing data are removed. For the rest of the features with missing data ,
we use the k-nearest neighbors (KNN) algorithm to impute a missing value with the average of its k neighbors,
assuming that the missing values are at random places. In our study, the mixed Euclidean distance function
is used, k is set to 10 empirically via experiment. The average percentage of missing values handled by KNN
imputation is 9.6% (8.64% in training data and 0.96% in testing data). Although the baseline static data (e.g.
Tau, Amyloid Beta, age, etc.) are: 1) medically critical for the medical experts to infer about the patient’s status,
and 2) valuable to enhance the performance and robustness of the deep learning models as illustrated in Figure
S4 of Supplementary File 2, we found that the use of different imputation techniques has a minor effect on the
overall model performance. For time-series data, any univariate time series time with either more than 30%
missing data or has no baseline reading is removed. Handling missing values in time series is conducted in two
sequential strategies. (1) Unify all time series by filling values at a specific time based on our knowledge of
ADNI procedures. Some time series values are intentionally not collated by ADNI based on the patient status.
For example, CN patients of ADNI1 do not have an MRI scan at the M18 visit. Also several lab and cognitive
tests as well as neuroimaging scans are not done periodically for all patients. We follow a restricted procedure
to fill these values by a forward filling of former values when the diagnosis has not changed. We only consider
a value is missing in the time series if the patient diagnosis has changed. This technique of unifying the time
series is common in Alzheimer’s literature [71]. (2) We take the advantages of LSTM’s ability to analyze time
series with variable lengths or has missing data at certain time points. An LSTMmasking layer is added after the
input to handle the missing inputs. This method is well known in the literature and outperform other imputations
techniques for handling missing values of time series data [72, 73, 74]. In our model, the missing time points are
filled with meaningless values (-55) in the masking layer. The resulting time-series data have a regular interval
of six months and fed to our BiLSTM model directly.

• The second step is to divide the dataset into a training set (90%) and a test set (10%). The training set is for
building and validating the model, while the test set is for checking the generalizability of the model. This
process is repeated ten times and the average performance is reported.

• The third step is to rescale the data to be homogeneous. We normalize the data in the range [0, 1]. Outliers are
detected and replaced by the average value for its class.

• The fourth step is data balancing. Our dataset is not severely imbalanced because the classes distribution are:
CN (30.56%), MCI (44.71%), and AD (24.73%). Since the ML models are prone to be biased in the case of
imbalanced datasets. There are many techniques for handling imbalanced datasets, and the synthetic minority
oversampling technique (SMOTE) is a popular technique for oversampling and undersampling data [75]. In
our case, SMOTE is adopted to address the class imbalance in the training set by only using the oversampling
technique.

• Feature selection is a critical step in the ML pipeline. In the embedding methodology, selection is part of
the learning procedure. We are mainly rely on the power of DL to extract the most informative features from
the time series data. In addition, we explicitly examine the role of different MRI feature categories including
hippocampal, volume, temporal, cortical thickness, etc.
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After data preparation, the DLmodel is trained and validated. To guarantee unbiased tuning of model hyperparameters
and because our dataset is relatively small, the LSTM model training and validation process (i.e. hyperparameters
optimization) are based on stratified 10 fold cross-validation repeated 10 times [76]. The DL model is separately
optimized for both design schemes (MRBL andDFBL). The tunedmodels are tested using the unseen test sets. Keeping
the test set untouched is critical to estimate the generalization performance of the selected model. It is worth noting
that the final evaluation of the resulting model is performed on the held-out set, which is not used prior to either
model training or tuning of its parameters. This process is repeated 10 times, and the average performance is reported.
For the DFBL design, the hybrid model is optimized concurrently. The LSTM model and the connected classifier
(ML, FL, SoftMax) are trained simultaneously. For the MRBL design, the LSTM model is optimized for learning the
seven regression tasks, and the predicted CSs are collected. A separate process for optimizing the classifier (ML, FL,
SoftMax) is carried out based on the resulting feature set.

4. Experimental framework
4.1. ADNI study

The data used to prepare this study was obtained from the Alzheimer’s disease neuroimaging initiative (ADNI )
database. The datawas accessed onMarch 18, 2019. We selected 1371 subjects (54.5%male) fromADNI 1, ADNIGO,
and ADNI 2 based on the availability of data. Based on the subjects diagnosis from the baseline to month 48 of ADNI
study, patients are grouped into 4 classes, as shown in Figure 4. 1) 419 subjects are diagnosed as CN and remained
CN during the study period (i.e., from the baseline to M48). 2) 473 subjects are diagnosed as MCI during all the study
period. 3) 140 subjects are diagnosed as MCI at baseline+M06+M12+M18 visits and progressed to AD within 2.5
years starting fromM18 (i.e., from M18 up to M48). 4) 339 subjects are diagnosed as AD in all visits. The used list of
patient IDs can be found in Supplementary File 2. As shown in Figure 4, no subjects with reverse diagnosis, (e.g., from
MCI to CN, or AD to MCI) during visits, are included from the study. In other words, we considered the subjects with
the reverse diagnosis as misdiagnosed, this comes from the consideration that AD is an irreversible form of dementia.
Furthermore, all subject that have converted from CN to AD are also excluded. Our collected data has two main
categories. Several neuropsychological tests and biomarkers have been collected and individually validated for AD
progression. In this study, we will fuse two types of data. The first type is time-series data including the five modalities
of CSs subscores (78 features), neuropsychological battery (55 features), neuropathology data (13 features), MRI (326
features), and PET data (46 features). Specific categories of MRI that are explored include volumes (115 features),
cortical thicknesses (144 features), hippocampus region (17 features), surface areas (75 features), temporal region
(47 features). The second type is baseline (i.e. not time series) data including the 108 features of CSF markers (i.e.
amyloid-� peptide of 42 amino acids-A�1–42 [ABETA], TAU, and phosphorylated TAU [PTAU]); genetic information
APOE4; demographics; medical history; symptoms; lab tests; and physical examinations. A full description of our
dataset can be found in Supplementary file 2. Table 1 shows demographic and clinical information of the subjects.

Figure 4: Data formulation process.

4.2. Model training process
All the experiments of the paper are conducted on amachinewith an Intel®Xeon(R) CPUE5-2620 v3@2.40GHz×24

with Cuda-10.0 and three GEFORCE GTX TITANx 12GB GPUs; we used Python 3.7.7 distributed in Anaconda 4.8.3
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Table 1
Descriptive statistics of the main features of the dataset at baseline.

CN MCI (n=613) AD (n= 339)
(n= 419) sMCI (n=473) pMCI (n= 140)

Baseline M84 Baseline M84 Baseline M84 Baseline M84
Gender (M/F) 191/228 191/228 283/190 283/190 74/66 74/66 187/152 187/152
Age (years) 73.97±05.74 73.97±05.74 72.92±07.75 72.92±07.75 74.34±07.14 74.34±07.14 75.00±07.80 75.00±07.80
Education (y) 16.39±02.69 16.39±02.69 15.79±02.96 15.79±02.96 16.14±02.94 16.14±02.94 15.12±02.98 15.12±02.98
FAQ 00.19±00.73 00.30±01.11 02.09±03.14 03.47±04.81 04.55±04.53 15.04±07.52 13.30±06.85 18.69±07.37
MMSE 28.98±01.16 28.92±01.31 27.63±02.13 27.06±02.72 26.45±02.09 22.23±04.01 22.06±03.79 19.46±05.44
MoCA 25.67±01.96 25.30±02.54 23.14±02.69 22.74±03.14 21.77±01.99 17.83±04.47 17.48±03.54 16.07±05.30
APOe4 00.27±00.48 00.27±00.48 00.51±00.66 00.51±00.66 00.84±00.69 00.84±00.69 00.85±00.71 00.85±00.71
ADAS 11 05.63±02.82 05.75±03.24 08.89±3.80 10.55±06.44 13.41±05.02 22.95±11.58 20.21±06.53 25.84±12.12
ADAS 13 08.70±04.09 08.96±04.45 14.78±05.86 16.22±08.77 19.61±05.04 30.43±10.17 29.99±07.99 37.00±13.08
RAVLT imm. 45.79±09.71 45.78±10.85 36.42±10.66 34.10±11.81 29.69±07.08 21.72±07.54 22.64±07.48 18.33±08.44
RAVLT learn 06.12±02.23 05.76±02.40 04.56±02.51 03.20±02.54 02.67±02.48 01.48±01.36 01.37±01.35 01.40±01.67
RAVLT forget 03.56±02.83 03.39±02.90 04.42±02.61 04.52±02.39 05.60±02.35 04.72±02.14 04.80±02.83 04.98±02.18
RAVLT % forget 32.45±25.79 33.97±27.60 54.65±30.45 63.87±32.11 76.87±27.30 89.85±32.55 89.50±20.86 92.41±24.20
CDR 00.08±0.31 00.11±00.37 01.34±00.89 01.66±01.29 02.70±01.00 05.35±02.86 05.22±02.28 07.17±03.56

*Data are mean±standard deviation.

(64-bit). All the proposed models are implemented using Keras library based on TensorFlow as the backend. For the
classification task, the SoftMax activation function with categorical cross-entropy loss was used, while the sigmoid
activation function with mean square error loss was applied for the regression tasks. For the learning rate optimization,
all deep learning models are adopted Adam optimizer with a learning rate of 0.0001 [77]. The training batch size and
number of epochs were 15 and 60, respectively. To speed up, we parallelized the training process across the GPUs.
The training of the proposed models is an optimization process to find the best parameters that give the best perfor-
mance either in the classification task or in multitask regression tasks. We split our dataset into stratified 90% training
and validation, and 10% test datasets. We used a procedure known as stratification to randomize the instances at each
execution to ensure that training and testing datasets contain a similar proportion of the all classes. This procedure is
repeated ten times in all reported experiments to avoid bias. For the DFBL design, the DL model optimizes a mul-
ticlass classification task using SoftMax at the output layer. After the optimization process, the model is frozen and
used to identify deep features in the test dataset. The resulting deep features are fed to either SoftMax, regular ML, or
fuzzy classifiers. For the MRBL model, the DL model is optimized to learn seven regression tasks using the Sigmoid
activation function at the output layers. The hyperparameters of the final models are evaluated using stratified 10-fold
cross-validation before we decided on the final hyperparameters. In our experiments, we feed each modality of our
five modality data to a masking layer followed by two stacked BiLSTM layers. These layers have (128×2) and (64×2)
units with L2 regularization of 0.005, a dropout of 0.15, and a Tanh activation function. Each BiLSTM module has an
equal number of LSTM layers, but their weights are independently optimized. The five BiLSTM blocks are fused to
a new BiLSTM layer with (320×2) units and this is merged with the background static data to learn the more abstract
deep features of all modalities. The background data are added to the model after passing two sequential feed-forward
dense layers, these reduce the dimensionality of features from 108 to 64. The learned abstract features fed to either the
regression or classification task after passing through three consecutive dense layers (64, 32, 32 units for each layer)
using the ReLU activation function, L2 regularization of 0.005, and drop out of 0.20. All outputs from the last dense
layer are used either to optimize DFBL or MRBL, as illustrated in Figure 1. For the DFBL architecture, the 32 deep
features generated by the last dense layer are fed to three classifies types, including the SoftMax, ML (SVM, RF, DT,
NB, and GM), and FL (FURIA, and MOEFC) classifiers to predict the AD progression at M48, see Supplementary
Figure S1. The 10-fold cross-validation was used in all the classification experiments with the grid search method
chosen to find the optimal hyperparameters. The optimized MLmodel was evaluated on an unseen test set, the average
of the ten evaluations is reported. For the MRBL design, the model jointly optimizes seven regression tasks. The
concatenated features of the last BiLSTM layer with a static layer are fed to seven separate blocks, where each block
is responsible for one regression task, as illustrated in Figure 1. The added dense block has three dense layers using
the ReLU activation function, L2 regularization of 0.005, and drop out of 0.20. Another dense layer is added for each
regression task using a sigmoid activation function, L2 regularization of 0.005, and drop out of 0.20 to predict the re-
gression values, see Supplementary Figure S2. The regression tasks are stopped early when the error does not decrease
within the next 30 epochs. The network is trained only on a training set, while validation samples are used to determine
Tamer ABUHMED et al.: Preprint submitted to Elsevier Page 11 of 29
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Table 2
Optimized hyperparameters for ML algorithms used in the DFBL and MRBL models

Model. Algorithm Hyperparameter

DFBL

SVM Support Vectors = 74, Cost = 10, solver – lbfgs, gamma = 0.01, learning_rate= adaptive
NB Laplace smoothing = active
RF criterion=gain ratio, max_depth=2, number of trees = 100
GM alpha = 0.5, lambda = 9.145E-4, kernel = guession
DT criterion=gini, max_depth=4, minimum leaf split=2
FURIA fuzzy operator=product T-norm, batch=20, folds=4, optimization=2, minimum weight=2
MOEFC algorithm=NSGA2, batch=20, generations=100, population=150, max similarity=0.4

MRBL

SVM Support Vectors = 465, Cost = 1000, solver – lbfgs, gamma = 1.0E-4, learning_rate= adaptive
NB Laplace smoothing = active
RF criterion=gain ratio, max_depth=4, number of trees = 60
GM alpha = 0.5, lambda = 6.855E-4, kernel = guession
DT criterion=gain ratio, max_depth=4, minimum leaf split=2
FURIA fuzzy operator=product T-norm, batch=20, folds=4, optimization=2, minimum weight=2
MOEFC algorithm=NSGA2, batch=20, generations=100, population=150, max similarity=0.4

when to stop the optimization process. The average results of the regression multitask are reported for the unseen test
sets. Similar to DFBL, all the predicted values of the multitask regression are fed to three classifies types, the SoftMax,
ML (SVM, RF, DT, NB, and GM), and FL (FURIA, and MOEFC) classifiers, to predict the AD progression at M48.
In the MRBL experiments, the 10-fold cross-validation was used in all the classification experiments using the grid
search method to find the optimal hyperparameters. The optimized ML model is evaluated on the unseen test set, and
the average of ten evaluations is reported. Table 2 illustrates the optimal hyperparameters of the ML algorithms for
the DFBL and MRBL models.
4.3. Performance evaluation metrics

The performance in regression tasks is evaluated using the mean absolute error (MAE), as defined in Equation 14,
whereN is the number of cases, yi is the actual value for example i, and f (xi) is its predicted value.

MAE = 1
N

N
∑

i=1

(

yi − f (xi)
) (14)

The performance in classification tasks is evaluated using the standard four metrics of accuracy, precision, recall, and
F1-score ( Equations (15) to (18)), where TP stand for true positive, TN means true negative, FP is false positive, and
FN is false negative.

Accuracy = TP + TN
TP + TN + FP + FN

(15)

Precision = TP
TP + FP

(16)

Recall = TP
TN + FN

(17)

F1 − score = 2 × Precision × Recall
P recision + Recall

(18)
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4.4. Statistical analysis
4.4.1. Selecting efficient cognitive markers

To determine the independent CSs with the highest discriminative power, we performed the following steps. First,
we surveyed the literature to collect the most important cognitive markers. Next, based on our training dataset, we
performed a deep statistical analysis to select the most significant scores for use in regression tasks with the DL model.
A P-value < .05 is considered significant. We use a set of statistical tests based on the nature of the data, i.e. normal
distribution and outliers. The sizes of the different diagnostic groups (i.e. CN, MCI, and AD) are large enough for all
statistical tests, and CSs, to have no outliers. For CSs displaying normal distribution including ADAS-cog, MoCA,
ADNI MEM, and RAVLT-Immediate, we used a one-way analysis of variance (ANOVA) parametric test to check that
the three independent classes are significantly different (i.e. CN-MCI-AD). For post-hoc testing after AVOVA, we
use the conservative Scheffe test to check each pair of diagnostic groups (i.e. CN-MCI, CN-AD, and MCI-AD), this
prevents type 1 errors. For the groups that had a non-normal distribution including MMSE, FAQ, and CDR we use the
non-parametric Kruskal-Wallis test for the three groups tests followed by Dunn’s test for post-hoc multiple comparisons
based on Bonferroni’s correction. Seven markers were selected to be predicted by the LSTM model. As asserted in
Figure 5, statistical analysis indicates that the selected scores are statistically highly significant (P<.0001), and there
exists statistically high significant differences among CN and MCI, CN and AD, and MCI and AD (P<.0001). As
can be seen in the distributions in Figure 5, there are significant differences among the means of different groups for
each score. As a result, the selected markers are considered as significant predictors of AD progression. Longitudinal

Figure 5: Group of box plots showing the distributions of seven CSs selected to be learned by the DL model.

changes in the selected CSs could track AD patient progression. As shown in Figure 6, different Alzheimer’s disease
classes (i.e. CN, sMCI, pMCI, and AD) have significantly different ranges of values (P<.005) at each specific visit
at BL, M06, M012, M18, and M48. As a result, the LSTM model is able to differentiate each class at each visit and
track its change from the previous visit. In addition, the pMCI class has a clear progression behavior between M18
and M48 for all selected CSs. In other words, in the M18 visits, all pMCI cases are considered MCI, but in M48 visits
these cases have progressed to AD class. We notice that different classes have different levels of progression for each
marker. As shown by the standard deviations, the CN and sMCI classes are approximately stable because they are
changing very slowly. On the other hand, the pMCI and AD classes are changing fast. For example, CDR has average
values of 0.083±0.30, 1.34±0.89, 2.07±1.00, and 5.23±2.29 for respective CN, sMCI, pMCI, AD classes at the BL
visit; 0.083±0.30, 1.34±0.89, 2.07±1.00, and 5.23±2.29 at M06; 0.099±0.32, 1.39±0.98, 2.29±1.11, and 6.00±2.93
at M12; 0.099±0.32, 1.38±1.00, 2.48±1.15, and 6.02±2.97 at M18; 0.11±0.37, 1.66±1.30, 5.37±2.69, and 7.18±3.57
at M48. CN and sMCI classes exhibit a slow rate of cognitive decline; however, the pMCI and AD groups undergo
statistically significantly increases (P<.001) especially between M18 and M48, indicating a cognitive decline of the
participants.
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Figure 6: Patterns of decline of different markers to show the temporal progression of selected CSs from BL reading to
M48 reading.

4.4.2. Selecting static features
The selected CS markers in the previous step are used in the LSTM model as the seven regression tasks. The

LSTM function is to predict the values of these scores at M48 visit based on the four-time steps of BL, M06, M12,
and M18. Other features like age (P<.0005, Student’s T-test), gender (P< .0002, Chi-Square test), and the number
of education years (P<.0001, Student’s T-test) are found to make a significant difference between different classes.
These three features are combined with the predicted values of the seven CS markers. These 10 features are used
later by the interpretable models to elucidate the model’s decisions at M48. The LSTM model combines a large set of
static baseline features with five complementary time-series modalities including CSs sub-scores, a neuropsychological
battery, neuropathology, MRI, and PET to optimize the multitask (i.e. seven task) regression problem.

Figure 7: Time series flattening process and learning with FFNN.

5. Results and discussion
To evaluate the performance and effectiveness of our proposed multimodal multitask DL methods, we tested and

compared many schemes, as illustrated in Figure S3 of Supplementary File 2. All reported results are based on the
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unseen testing data. All experiments were repeated ten times and the average performance is reported. In these exper-
iments, we answer the proposed hypotheses in the Introduction Section. Before starting the experiments to evaluate
the proposed models, we have conducted an initial evaluation for selecting the best modalities that can be used in our
multimodal models, as illustrated in Figure S4 and S5 of Supplementary File 2. We have noticed that including all
modalities achieved the best performance and made the model robust and stable. Moreover, we explored the option
of replacing BiLSTM layers of the two proposed model of Figure2 by BiGRU layers and found ≈ 3%, 2% accuracy
degradation in the MRBL and DFBL models, respectively (see Figure S4 and S5 of Supplementary File 2). In Experi-
ment 1, we check the first argument o "can the use of fused multimodal time series data and deep BiLSTM model lead
to a more accurate prediction of AD progression?" In this experiment, we compare the deep BiLSTM model with the
FFNN. The FFNN has been optimized using the BL, M18, and flattened data. The flattening process is inspired by the
image processing field. As shown in Figure 7, for each patient, all time-series data are converted into a single vector.
This vector is fed as input to the FFNN. The question of “does a hybrid model of a deep learning model for feature
representation learning and an accurate ML model for classification improve the performance of the resulting DL
model?” is answered in Experiment 2. The question of “does the joint learning of multiple regression tasks generate
a more robust and stable DL model?” is answered in Experiment 3. The question “is it possible to predict the future
values of a set of cognitive scores and use them to predict the AD progression?” is investigated in Experiment 4. The
explainability question is tackled in Experiment 5. Finally, the selection of the best category of MRI features is investi-
gated in every experiment to determine the most critical feature set from the volume, cortical thickness, hippocampus,
surface area, temporal region, or all MRI features. Please note that we used this categorization according to previous
studies [13, 59, 64, 65]. We select the best category results using our less complex, faster, and more interpretable
model.

Figure 8: Comparison between performance for different deep features learning methods.

5.1. Experiment 1: Deep feature extraction
This experiment explores the role of time-series data and the BiLSTM DL model to recognize deep representation

in the multivariate longitudinal data. We compare the LSTM model based on multimodal time series data with the
FFNN based on the BL, M18, or flattened time series data. Please note that we used the BL data because most previous
studies were based on baseline data [18, 35, 39]. TheM18 data was used to check if themodel is more accurate whenwe
shorten the period between observation and prediction. We used the flattened dense architecture, which was fed with
the flattened time series data, to compare the models’ capability for capturing temporal relationships with the BiLSTM
architecture. Figure 8(A) depicts the comparison between the deep BiLSTM-based and FFNN-based models. The
BiLSTM model was optimized based on multimodal time-series data, and the FFNN models were optimized using
BL, M018, and flattened datasets. The BL-FFNN model achieved an average performance of Accuracy= 74.55%,
Precision= 75.28%, Recall= 85.94%, and F1-Score= 79.02%. TheM18-FFNNmodel achieved average performance of
Accuracy= 72.62%, Precision= 80.83%, Recall= 89.42%, and F1-Score= 72.33%. The Flatten-FFNNmodel achieved
average performance of Accuracy= 73.64%, Precision= 76.44%, Recall= 84.01%, and F1-Score= 73.58%. The time-
series-BiLSTMmodel achieved average performance of Accuracy= 81.22%, Precision= 78.21%, Recall= 82.24%, and
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F1-Score= 81.23%.
The M18-FFNN model achieved the worst F1- and Accuracy scores, but it achieved the best Recall. The BiLSTM

based model achieved the best Accuracy and F1-Scores. Note that, even though the M18-FFNN model achieved
the best Recall, the BiLSTM based model achieved the highest F1-Score, which is the mean of both the Recall and
Precision. The Flatten-FFNN model did not see any improvement in performance, even though it is based on all of the
data over all time steps. The main reason for this is probably due to the huge features created in the flattening process,
and the limited capability of the FFNN to learn the temporal features of the data. On the other hand, we observed
that M18-FFNN and Flatten-FFNN models achieved comparable performance. It is worth noting that this experiment
is based on the DFBL design. Concretely, the four compared models are carry out multiclass classification tasks
to predict patient class at M48 using the SoftMax classifier. The learned deep features were tested for the multitask
regression optimization design (MRBL). Figure 8(B) shows the performance of the different models. The deep features
of every model are used to optimize the seven regression tasks for CSs at M48, and then these scores are used to predict
the patient’s class. The BiLSTM based model achieved the highest average results of Accuracy= 78.89%, Precision=
80.79%, Recall= 77.60%, and F1-Score= 79.13%. the BL basedmodel achieved theworst average results of Accuracy=
54.53%, Precision= 65.69%, Recall= 54.38%, and F1-Score= 59.51%. We observe that the BiLSTM based model is
also more stable and confident. The average standard deviations of the models are 8.26%, 8.77%, 8.15%, and 5.84%, for
BL, M18, Flatten, and BiLSTM based models, respectively. From these results, we selected the BiLSTM based model
to be the main model for learning the deep representations in the time series data. It can be seen that the performance of
almost none of the models is high, and this problem is tackled in the next experiments where we integrate the learned
deep features with regular ML and fuzzy classifiers.

Figure 9: Comparison between different classifiers based on the learned deep features.

5.2. Experiment 2: Progression detection based on the DFBL
This experiment investigates the second hypothesis. We explore the effect of using different classifiers with the

learned deep features from the deep BiLSTM model. We replaced the deep learning classifier with two types of
classifiers, including five regular ML and two fuzzy classifiers. The results are shown in Table 3. This table shows the
classification performance of eight classifiers using six different categories of MRI features. Surprisingly, the Softmax
classifier did not beat any of the tested classifiers, it achieved results of Accuracy= 81.22%, Precision= 78.21%, Recall=
82.24%, and F1-Score= 81.23%. The lowest performance of the other classifiers was from the MOEFC. It achieved
averageAccuracy= 81.30%, Precision= 81.72%, Recall= 81.30%, and F1-Score= 81.26%. Fuzzy classifiers commonly
have lower performance, but they provide interpretable results in the form of lists of fuzzy rules. FURIA and MOEFC
have similar results. The best classifier is RF, which has average Accuracy= 82.63%, Precision= 84.68%, Recall=
84.80%, and F1-Score= 84.73%. Figure 9(A) illustrates a comparison between the average performance of different
models. On average, RF achieved the best results. RF is an ensemble classifier, which is more robust than other
individual classifiers such as SVM and NB. We conclude that combining regular ML with deep learning can improve
classification task results and beat the performance of the SoftMax classifier.

To explore the role of using different categories of MRI features, we optimize the BiLSTM model based on the
used MRI category in combination with other features. Different categories have different results. The list of Surface
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Table 3
Performance of the DFBL model

Metric Modality SVM NB RF GM DT Softmax FURIA MOEFC

Accuracy

Volume 86.02±6.85 83.68±5.43 82.87±4.15 86.02±6.85 84.91±6.71 81.03±2.23 81.32±1.79 80.52±2.41
Cortical 81.75±2.59 79.43±4.49 82.81±2.20 81.75±2.59 83.92±3.53 80.88±0.96 80.88±2.28 81.76±2.18
Hippocampus 82.92±4.70 78.54±3.44 82.98±2.29 84.04±0.39 82.98±2.29 82.27±1.82 82.27±2.04 81.46±2.04
Surface 86.08±5.99 88.19±4.52 81.75±2.59 86.08±5.99 82.87±4.15 82.78±2.01 82.63±2.00 83.14±2.52
Temporal 84.80±2.33 83.86±0.48 84.74±4.75 86.08±4.69 82.87±4.15 81.25±1.62 83.14±2.29 83.07±2.68
All MRI 71.11±8.42 80.75±4.66 80.64±2.91 72.34±4.36 75.56±4.54 79.13±2.18 77.74±3.37 77.82±2.26

Precision

Volume 86.70±6.59 86.52±2.85 84.70±5.09 86.02±6.85 86.10±6.29 77.01±2.68 81.60±0.02 80.72±0.02
Cortical 83.48±4.07 78.92±2.57 84.83±3.93 83.48±4.07 85.32±3.03 78.37±2.14 81.40±0.02 81.92±0.02
Hippocampus 84.34±5.61 84.06±2.42 87.12±1.75 86.67±1.56 85.28±3.65 77.35±1.98 82.59±0.02 81.92±0.02
Surface 87.20±5.52 89.25±3.36 82.84±2.37 87.20±5.52 83.82±3.92 83.09±1.91 82.85±0.02 81.92±0.02
Temporal 85.68±3.59 86.03±0.96 86.98±4.26 88.45±3.61 83.82±3.92 77.89±2.35 83.50±0.02 81.92±0.02
All MRI 77.49±6.72 81.17±4.42 81.60±3.78 77.44±4.66 76.23±4.86 75.53±3.12 77.64±0.03 81.92±0.02

Recall

Volume 88.67±6.31 84.59±5.30 85.81±4.13 88.67±6.31 87.33±6.22 81.09±3.84 81.33±0.02 80.51±0.02
Cortical 81.78±3.22 79.98±1.42 84.56±3.67 81.78±3.22 84.02±2.79 81.53±3.87 80.88±0.02 81.77±0.02
Hippocampus 85.13±3.96 79.24±4.95 88.28±3.13 85.88±1.28 84.86±1.97 82.40±2.98 82.27±0.02 81.46±0.02
Surface 87.47±5.86 88.19±4.52 81.86±2.91 87.47±5.86 83.74±3.13 83.38±3.03 82.64±0.02 83.15±0.03
Temporal 86.63±3.57 86.11±1.17 85.98±5.69 87.63±4.71 83.74±3.13 80.66±3.76 83.14±0.02 83.07±0.03
All MRI 71.24±6.60 79.22±5.04 82.32±2.12 73.83±4.43 77.76±3.78 84.35±2.86 77.74±0.03 77.81±0.02

F1-Score

Volume 87.67±6.45 85.54±4.07 85.25±4.52 87.32±6.55 86.71±6.25 81.03±2.23 81.36±0.02 80.55±0.02
Cortical 82.62±3.64 79.44±1.99 84.69±3.75 82.62±3.64 84.66±2.91 80.88±0.96 81.00±0.02 81.75±0.02
Hippocampus 84.73±5.73 81.57±3.68 87.69±2.44 86.20±1.42 85.07±2.81 82.27±1.82 82.35±0.02 81.54±0.02
Surface 87.33±5.69 88.71±2.26 82.34±2.64 87.33±5.69 83.77±3.52 82.78±1.90 82.64±0.02 83.09±0.03
Temporal 86.15±3.58 86.05±0.98 86.47±4.97 86.83±3.72 83.75±3.21 81.25±1.62 83.14±0.02 83.06±0.03
All MRI 74.23±6.66 80.14±4.73 81.95±2.91 75.59±4.49 76.98±4.25 79.16±2.16 77.47±0.03 77.58±0.02

Area features achieved the highest average results of Accuracy= 84.19%, Precision= 84.77%, Recall= 84.74%, and F1-
Score= 84.75%. Using the Temporal region features (see Figure S6 in Supplementary File 2) achieved a comparable
result to the Surface Area category, i.e. Accuracy= 83.73%, Precision= 84.38%, Recall= 84.62%, and F1-Score=
84.59%. Figure 9(B) depicts the average performance of each category regardless of the ML classifier used. As
illustrated in Figure 9(B), using all the MRI features is not a good idea because it achieved the lowest average results
of Accuracy= 76.88%, Precision= 78.62%, Recall= 78.03%, and F1-Score= 77.89%.
5.3. Experiment 3: Multi-tasks regression

In this experiment, we investigated the two related questions of “is the joint learning of multiple tasks based on
the deep BiLSTM model more accurate and stable than using FFNN with BL, M18, and Flatten?” and “does the joint
learning of multiple regression tasks generate a more robust and stable model than single-task models?.” The first
question investigates the role of BiLSTM in multitask modeling, the second one investigates the role of multitask
modeling on the performance of regression tasks based on the BiLSTM model. Regarding the first question, Table 4
shows the results based on the MAE for the seven regression tasks. The results are reported for the six MRI categories.
We investigated four models: deep BiLSTM with time series, and FFNN with BL, M18, and Flatten data. It is clear
from the table that BiLSTM has a lower error rate for every regression task compared to the FFNN models. The
detailed performance of every regression task for each model is illustrated in Figure S6 in Supplementary file 2. The
box plots of Figure S2, assert that BiLSTM based SCs are more accurate and less noisy than FFNN based scores. The
average performance of these four models is illustrated in Figure 10(A). The BiLSTM model is more accurate than all
other FFNN models because it achieved the lowest error rates in all MRI categories. The BiLSTM model achieved
MAE values of 6.5714, 6.4286, 7.2929, 6.4286, 6.5714, and 6.7143 for Volume, Temporal, Cortical, Hippocampus,
Surface, and All MRI categories, respectively. The average MAE rates for the BiLSTM, BL-FFNN, M18-FFNN, and
Flatten-FFNN are 6.6679, 9.3571, 8.8333, and 7.4286. More importantly, the BiLSTM model is more stable than
the other models. The average standard deviations for the BiLSTM, BL-FFNN, M18-FFNN, and Flatten-FFNN are
0.2598, 1.0435, 0.7809, and 0.4914. As noticed the Flatten-FFNNmodel is more stable than other FFNNmodels. This
could be a result of using all flattened time-series features. Figure 10(B) explores the best performing CSs for every
design model. It is of note that the BiLSTMmodel achieved the lowest MAE rates for the seven tasks. ADNIMEMhad
the best cognitive score (MAE= 5.135) in the BiLSTM model, and FAQTOTAL had the worst (MAE= 9.162). The
averageMAE rates for ADAS13, MMSCORE, FAQTOTAL, CDRSB,MOCA, RAVLT, ADNIMEM are 6.582, 7.103,
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Table 4
The MAE results for deep feature extraction based on DL and FFNN models.

Model
(time steps) Modality ADAS13 MMSCORE FAQTOTAL CDRSB MOCA RAVLT ADNI

MEM

DL
(4 time-steps)

Volume 6.00±0.34 6.00±0.19 09.00±0.42 06.00±0.26 08.00±0.31 06.00±0.20 5.00±0.16
Temporal 5.00±0.23 6.00±0.11 09.00±0.41 06.00±0.23 08.00±0.21 06.00±0.18 5.00±0.14
Cortical 5.97±0.31 6.48±0.24 09.97±0.57 06.96±0.27 09.25±0.31 06.61±0.28 5.81±0.23
Hippocampus 5.00±0.25 6.00±0.17 09.00±0.39 06.00±0.27 08.00±0.27 06.00±0.19 5.00±0.09
Surface 6.00±0.31 6.00±0.19 09.00±0.36 06.00±0.29 08.00±0.24 06.00±0.22 5.00±0.12
ALL MRI 5.00±0.23 6.00±0.22 09.00±0.38 07.00±0.26 09.00±0.25 06.00±0.34 5.00±0.28

FFNN
(baseline visit)

Volume 7.00±0.85 9.00±0.73 10.00±2.35 09.00±2.56 10.00±0.45 11.00±0.53 8.00±0.41
Temporal 8.00±1.53 9.00±0.18 11.00±2.91 10.00±1.87 10.00±0.39 11.00±0.51 8.00±0.39
Cortical 8.00±0.57 9.00±1.37 10.00±0.52 10.00±2.30 10.00±0.59 11.00±0.83 8.00±0.60
Hippocampus 9.00±1.93 9.00±0.23 12.00±3.46 11.00±1.61 10.00±0.48 11.00±0.75 8.00±0.64
Surface 8.00±0.78 9.00±0.15 11.00±2.92 10.00±2.25 10.00±0.52 11.00±0.54 9.00±0.37
ALL MRI 7.00±0.49 7.00±1.66 09.00±0.45 07.00±0.72 10.00±0.47 10.00±0.59 8.00±0.38

FFNN
(M18 visit)

Volume 7.00±0.59 9.00±1.33 09.00±0.73 09.00±1.74 09.00±0.35 10.00±0.63 8.00±0.57
Temporal 7.00±0.93 9.00±0.21 11.00±1.86 09.00±1.34 10.00±0.36 10.00±0.56 8.00±0.37
Cortical 7.00±0.48 8.00±1.59 10.00±0.51 09.00±1.74 10.00±0.58 10.00±0.78 8.00±0.55
Hippocampus 7.00±0.84 9.00±0.73 11.00±0.80 09.00±0.91 10.00±0.36 10.00±1.18 8.00±0.63
Surface 7.00±0.66 9.00±0.63 11.00±0.59 09.00±1.73 10.00±0.74 10.00±0.54 8.00±0.56
ALL MRI 7.00±0.50 7.00±1.45 10.00±0.36 07.00±0.70 09.00±0.33 09.00±0.46 7.00±0.31

FFNN
(flatten 4
time-series)

Volume 6.00±0.41 5.00±0.19 09.00±0.28 06.00±0.23 09.00±0.37 09.00±0.46 7.00±0.47
Temporal 6.00±0.52 5.00±0.22 10.00±0.54 07.00±0.45 09.00±0.44 09.00±0.36 7.00±0.56
Cortical 6.00±0.76 5.00±0.36 09.00±0.43 07.00±0.40 09.00±0.32 09.00±0.35 7.00±0.42
Hippocampus 6.00±0.61 6.00±1.18 10.00±2.09 07.00±0.64 09.00±0.65 09.00±0.42 7.00±0.62
Surface 6.00±0.40 5.00±0.30 09.00±0.41 07.00±0.34 09.00±0.57 09.00±0.82 7.00±0.33
ALL MRI 6.00±0.48 5.00±0.24 09.00±0.45 07.00±0.32 09.00±0.48 08.00±0.52 6.00±0.22

Figure 10: Performance of the cognitive scores prediction based on different models(i.e., Time series, BL, M18, and
Flatten) and used MRI category.

9.832, 7.832, 9.26, 8.9, and 6.992, respectively. On average ADAS 13 achieved the best performance and FAQTOTAL
the worst. As shown in Figure 10(B), the BL-FFNN model achieved the worst results for all CSs regression tasks. It
has MAE rates of 7.833, 8.667, 10.5, 9.5, 10, 10.833, and 8.167 for ADAS13, MMSCORE, FAQTOTAL, CDRSB,
MOCA, RAVLT, ADNI MEM, respectively. This is obvious because the learning of the joint features for seven tasks
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and the optimization of such complex objective functions is too difficult to be learned in a single time step, especially
using the BL step. Figure 10(C) explores the role of different MRI categories on the performance of the BILSTM and
FFNNmodels. Again, the BiLSTMmodel achieved the best results for all MRI categories. For the BiLSTMmodel, the
best MRI feature groups are the Hippocampus and Temporal, i.e. MAE= 6.429, and using All MRI features achieved
the highest MAE of 6.714. On average, the MAE for the Volume, Temporal, Cortical, Hippocampus, Surface, and All
MRI are 7.929, 8.179, 8.252, 8.321, 8.214, and 7.536, respectively. The BL-FFNN achieved the highest MAE rates of
9.143, 9.571, 9.429, 10, 9.714, and 8.286 for Volume, Temporal, Cortical, Hippocampus, Surface, and All MRI. To
conclude, the previous results asserted the important role of the deep BiLSTM model to optimize a complex multitask
objective function. To answer the second question, we have compared the multitask model with 42 single-task models

Figure 11: A comparison between single task and multitask regression.

(7 CSs × 6 datasets of different subsets of MRI data). Figure 11 compares the performance of different data fusions
by averaging the results of the seven tasks. Multitask modeling achieved statistically significantly better results (P=
0.01, Student t-test). In addition, the multitask models are more stable because the models have lower variance than
the single-task models.

Figure 12: Performance of different classifiers based on the MRBL architecture.

5.4. Experiment 4: Progression detection based on the MRBL
This experiment investigates the question “Is it possible to predict the future values of a set of cognitive scores

and use them to predict AD progression?” We predicted seven critical CSs at M48 and used these scores to classify
the patient as CN vs. MCI vs. AD. We depended on the learned CSs from BiLSTM, as discussed in Experiment
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Table 5
The performance of the MRBL model.

Metric Modality SVM NB RF GM DT Softmax FURIA MOEFC

Accuracy

Volume 82.63±2.92 81.68±4.22 83.47±2.56 81.68±4.22 83.68±2.10 83.53±4.23 67.16±6.58 80.59±1.89
Cortical 72.42±5.85 71.42±5.72 82.89±6.57 62.00±7.61 77.53±4.62 78.32±2.64 67.74±3.30 77.96±2.52
Hippocampus 79.63±3.28 80.42±2.18 84.95±9.28 80.42±2.18 82.53±2.31 80.63±6.66 65.84±4.54 80.81±1.92
Surface 78.53±6.91 81.47±2.54 84.95±6.98 80.63±2.05 80.53±2.76 81.42±2.95 75.33±2.98 82.34±2.06
Temporal 78.58±4.26 79.58±3.77 82.84±8.90 79.63±3.28 79.58±0.58 79.63±3.28 67.74±4.86 80.81±1.92
All MRI 69.37±5.21 75.26±2.16 62.74±3.44 64.84±5.42 63.16±3.87 69.79±4.14 69.57±2.26 71.98±2.04

Precision

Volume 84.82±4.49 86.29±0.55 86.18±2.03 85.12±2.45 85.03±4.35 86.65±2.49 74.04±0.05 80.50±0.02
Cortical 74.87±6.04 74.44±4.24 85.17±7.23 74.21±5.25 77.56±4.20 81.05±5.13 74.32±0.02 78.03±0.03
Hippocampus 80.17±2.74 81.35±2.92 85.65±8.52 81.35±2.92 83.14±2.48 83.88±4.79 73.08±0.03 80.71±0.02
Surface 78.50±6.33 82.83±3.12 87.00±6.61 82.08±2.68 81.42±1.33 82.62±3.00 78.1±0.02 82.26±0.02
Temporal 80.68±3.24 81.65±3.38 84.37±7.99 81.21±4.09 80.63±3.15 80.94±0.91 74.26±0.03 80.71±0.02
All MRI 76.03±6.53 79.00±3.09 61.52±1.84 60.18±3.58 60.95±3.14 69.59±6.40 75.08±0.03 72.15±0.02

Recall

Volume 83.90±3.55 82.41±4.58 84.66±1.59 82.00±4.70 84.84±3.28 84.75±3.31 67.16±0.07 80.58±0.02
Cortical 74.06±7.11 72.57±6.19 82.66±6.47 62.74±7.81 79.08±4.27 78.52±3.68 67.75±0.03 77.97±0.03
Hippocampus 79.99±3.78 81.13±3.00 86.50±9.39 81.13±3.00 83.35±2.63 80.29±6.67 65.84±0.05 80.82±0.02
Surface 80.15±5.54 82.26±3.58 84.71±7.80 81.59±2.93 81.95±3.58 81.88±3.40 75.33±0.03 82.33±0.02
Temporal 79.94±5.01 80.25±3.91 83.83±8.59 80.02±4.06 80.52±4.71 79.94±1.81 67.74±0.05 82.33±0.02
All MRI 69.60±4.99 75.59±2.31 62.41±5.63 63.91±6.19 62.86±5.40 60.24±4.90 69.58±0.02 82.33±0.02

F1-Score

Volume 84.36±3.11 84.31±2.54 85.41±1.81 83.53±3.57 84.93±3.81 85.69±2.80 65.80±0.09 80.27±0.02
Cortical 74.46±6.57 73.50±5.21 83.90±6.85 67.99±6.53 78.31±4.23 79.76±4.41 67.64±0.04 77.78±0.02
Hippocampus 80.08±3.51 81.24±2.64 86.07±8.95 81.24±2.96 83.24±2.55 82.05±5.73 64.67±0.06 80.57±0.02
Surface 79.32±3.21 82.53±4.33 85.84±7.20 81.83±2.80 81.68±2.45 82.25±3.20 75.64±0.03 82.03±0.02
Temporal 80.31±4.25 80.94±3.64 84.10±8.29 80.61±4.07 80.57±3.66 80.44±1.36 67.13±0.06 80.57±0.02
All MRI 72.33±5.76 77.25±2.69 61.82±3.73 61.98±4.88 61.89±4.27 64.57±5.65 69.43±0.03 71.99±0.02

3. The predicted scores are combined with age, gender, and education features from background data. Note that the
added features are not affected by the time, so it is safe to integrate them with predicted features. The prepared dataset
was used to optimize five regular ML classifiers, Softmax, and two fuzzy classifiers. Table 5 shows the results for all
classifiers. We checked the role of different MRI feature types. Figure 12 illustrates the average performance with
respect to the ML model (Figure 12(A)) and the MRI category (Figure 12(B)). As shown in Figure 12(A), the RF
ensemble classifier achieved the best average results of Accuracy= 80.30%, Precision= 81.65%, Recall= 80.80%, and
F1-score= 81.19%. FURIA achieved the worst results of Accuracy= 68.90%, Precision= 74.81%, Recall= 68.90%,
and F1-score= 68.39%. However, MOEFC achieved a comparable average result to other ML models, i.e. Accuracy=
79.08%, Precision= 79.06%, Recall= 81.06%, and F1-score= 78.87%. The Softmax classifier achieved average results
of Accuracy= 78.89%, Precision= 80.79%, Recall= 77.60%, and F1-score= 79.13%. MOEFC is the most stable
because it has the lowest standard deviation of all performance metrics. i.e. Accuracy= 2.06%, Precision= 2.17%,
Recall= 2.17%, and F1-score= 2%. As a result, integrating regular ML models with an accurate DL model could
improve performance. DL is better at learning deep feature representations from complex data structures like time
series. Furthermore, DL models can jointly learn multiple tasks to produce more stable models. However, adding a
DL classifier to the extracted features usually requires a large amount of data. Regular ML classifiers could help in
this situation because they can be optimized using smaller amounts of data. Figure 12(B) compares the role of MRI
categories in the MRBL design. Using All MRI features achieved the worst average results of Accuracy= 68.34%,
Precision= 69.31%, Recall= 68.32%, and F1-score= 67.66%. The Surface and Volume categories achieved the highest
performance of Accuracy= 80.60%, Precision= 82.72%, Recall= 81.28%, and F1-score= 81.59%.
5.5. Comparison of DFBL and MRBL architectures

In this section, we compare the overall performance of MRBL and DFBL design architectures. Figure 13(A)
shows a comparison between eight models based on the FFNN and BiLSTM architectures for deep feature learning.
To explore the role of regular ML models as classifiers, we compare the best ML (i.e. RF) and Softmax models. All
ML models based on BiLSTM features are more accurate than other models based on FFNN. These models achieved
the best results, either using the RF or Softmax classifiers. Using the BiLSTM deep feature architecture: (1) the
DFBL-RF achieved the best results of Accuracy= 82.63±1.803%, Precision= 84.68±2.363%, Recall= 84.80±3.390%,
and F1-score= 84.73±1.782%; (2) MRBL-RF achieved the second-best results of Accuracy= 80.30±3.983%, Preci-
sion= 81.65±2.953%, Recall= 80.80±3.962%, and F1-score= 81.19±3.692%. Besides, these models are more sta-
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Figure 13: Comparison between the best models from DFBL and MRBL architectures. FVM (FFNN-Volume-MRBL), FVD
(FFNN-Volume-DFBL), FCM (FFNN-Cortical-MRBL), FCD (FFNN-Cortical-DFBL), FHM (FFNN-Hippocampus-MRBL),
FHD (FFNN-Hippocampus-DFBL), FSM (FFNN-Surface-MRBL), FSD (FFNN-Surface-DFBL), FTM (FFNN-Temporal-
MRBL), FTD (FFNN-Temporal-DFBL), FAM (FFNN-All MRI-MRBL), FAD (FFNN-All MRI-DFBL), BSM (BiLSTM-
Surface-MRBL), and BSD (BiLSTM-Surface-DFBL).

ble than other models. Using the Softmax classifier with BiLSTM deep features, the DFBL-Softmax architecture
achieved better results (Accuracy= 81.22±3.148%, Precision= 78.21±3.530%, Recall= 82.24±3.608%, and F1-score=
81.23±3.538%) than the MRBL-Softmax architecture (Accuracy= 78.89±4.955%, Precision= 80.79±5.703%, Re-
call= 77.60±6.578%, and F1-score= 79.13±6.138%). It is of note that using the DFBL to extract deep features from
time-series data using the BiLSTM model and feeding the extracted deep features to an accurate classifier like RF
results in a more accurate and more stable architecture. However, the resulting model is not interpretable because it is
based on deep features. On the other hand, optimizing the RF classifier using the predicted CSs at M48 did not result
in a highly accurate model, but the generated model is highly interpretable. This model is based on ten medically
interpretable features. The visualization of the resulting RF can be easily understood by medical experts [78], and the
collection of rules from the RF’s trees can be extracted and summarized using tools like inTrees [79]. In addition, the
fuzzy classifier in the MRBL can generate a medically acceptable model. This issue is discussed in the next section.
The FFNN based models are less accurate and noisier. The best Accuracy of an MRBL-based model is the Flatten-
FFNN-Softmaxmodel (64.87± 9.028%) and the best of a DFBL-basedmodel is the BL-FFNN-Softmaxmodel (74.55±
1.76%). The best Precision of an MRBL-based model is the Flatten-FFNN-Softmax model (69.33±6.99%) and of a
DFBL-based model is the M18-FFNN-Softmax model (80.82±1.70%). The best Recall of an MRBL-based model
is the Flatten-FFNN-Softmax model (66.86±8.98%) and of a DFBL-based model is the M18-FFNN-Softmax model
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Table 6
Heat map of the fuzzy rules for the FURIA and MOEFC classifiers.
Rule MOCA FAQ ADAS13 CDRSB MMSCORE RAVLT Imm. ADNI MEM AGE GENDER EDU DX
1. MOEFC classifier
G1 Male AD
G2 Male AD
G3 Female AD
G4 Male MCI
G5 Female MCI
G6 Male MCI
G7 Female CN
G8 Male CN
2. FURIA classifier
F1 AD
F2 AD
F3 AD
F4 AD
F5 AD
F6 AD
F7 MCI
F8 MCI
F9 MCI
F10 Male MCI
F11 MCI
F12 MCI
F13 CN
F14 CN
F15 CN
Color codes: high= red, medium= orange, low= green; not considered feature= gray.

(89.42±3.53%). The best F1-Score of an MRBL-based model is the Flatten-FFNN-Softmax model (67.65±7.60%)
and of a DFBL-based model is the BL-FFNN-Softmax model (79.02±1.50%). The Flatten-FFNN-Softmax model
achieved better overall performance compared to other FFNN-based models. However, it has much fewer results com-
pared to the BiLSTM-based models including RF and Softmax. Figure 13(B) illustrates a comprehensive comparison
between the different design architectures for the performance of all MRI categories from both FFNN and BiLSTM
architectures. It can be seen that the BiLSTM based models achieved the best average results for either MRBL or
DFBL based on the Surface area category. Please note that these averages are calculated from the performance of
the five regular ML, the Softmax, and the two fuzzy models. The MRBL-based design has an average performance
of Accuracy= 80.65±3.72%, Precision= 81.85±2.83%, Recall= 81.28±3.17%, and F1-score= 81.39±2.72%. The
DFBL-based design has the average performance of Accuracy= 84.19±3.65%, Precision= 84.77±2.76%, Recall=
84.74±3.36%, and F1-score= 84.75±2.90%. The best FFNN-based model is FFNN-Hippocampus-DFBL, where the
Hippocampus category is used with the DFBL design. It achieved average performance of Accuracy= 74.32±5.06%,
Precision= 79.32±3.76%, Recall= 80.02±5.70%, and F1-score= 76.46±3.75%. All of these results are less accurate
than the BiLSTM-based architecture, which highlights the crucial role of time series analysis in deep BiLSTMmodels.
5.6. Experiment 5: Explainability of progression detection decision

The previous list of experiments concentrated on the performance of the resulting model. However, in the medical
domain, accuracy is not the only measure of acceptable systems. The interpretability of the model is also a crucial
requirement because physicians are expected to sufficiently understand and trust the model before they start using it
[80]. In ML, there is a trade-off between performance (e.g. accuracy) and interpretability. Transparent models that
are considered interpretable, such as LR, KNN, DT, and FL models, often perform worse than black-box models, such
as DL, SVM, and RF. Medical experts prefer a balanced model that is as accurate and interpretable as possible. For
example, in Caruana et al. [81], LR was chosen by domain experts over FFNN because of interpretability concerns.
Although FFNN achieved a significantly higher ROC score than the LR, the experts considered it too risky to deploy
a black-box model like FFNN for decision making with real patients. The LR, on the other hand, though less accurate,
provides physicians with a transparent and interpretable model, which can facilitate the investigation of problematic
patterns in data. It is worth noting that there is no previous study on the interpretability of hybrid multimodal multitask
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DL models in the AD domain. According to the previous experiments above, the DFBL with RF achieved the best
results. However, all models based on the DFBL are not interpretable because they are based on deep features extracted
from the BiLSTM model. As a result, to achieve interpretability, we should concentrate on the MRBL architecture. It
is possible to calculate the importance of the learned features with MRBL (Supplementary File 2, Figure S7). We have
calculated the importance of the eight learned CSs and integrated three demographics using many techniques including
information gain, Gini index, gain ratio, correlation, feature importance of the XGBoost classifier, and permutation
importance using RF. All methods agreed that CDRSB is the best feature to predict AD progression, followed by FAQ.
The least important feature is gender. Using the level of importance, domain experts can understand why a model has
taken specific decision for a specific patient. Further, we used many ML models with the MRBL design and the most
interpretable models are the DT, FURIA, and MOEFC. All these models can formulate their decision behavior as a list
of rules. Nevertheless, the performance of the RF model is better than all explainable models, see Table 5. The best
accuracy achieved by the RF model is 84.95% using hippocampus and surface area feature spaces. The best accuracy
of the DT is 83.68% using the volume feature set. Regarding FURIA and MOEFC, the best accuracies are 75.33% and
82.34%, respectively, using the surface area feature space. It should be noted that DT andMOEFC achieved acceptable
results compared to RF. These models are expected to provide an accurate explanation in connection with the RF
decisions. As MOEFC is based on genetic optimization and Gaussian membership functions, it achieved better results
than FURIA. Simple rule-based models are commonly considered to be interpretable [80]. The MOEFC generated
eight rules (3 for AD, 3 for MCI, and 2 for CN), FURIA generated 15 rules (6 for AD, 6 for MCI, and 3 for CN), and
DT generated 21 rules (7 for AD, 11 for MCI, 2 for CN). The full list of rules can be found in Supplementary Table S2,
Table S3, and Table S4. Table 6 illustrates the utilized features for the rule-based FURIA and MOEFC. On average
four features are used in the antecedent of the FURIA rules and nine features are utilized by the MOEFC model. The
Education feature was completely ignored by MOEFC, while the RAVLT features was ignored by FURIA. Please note
that we could not add the DT rules in Table 6 because the decision boundaries of these rules are crisp.
5.7. Comparison with related studies

The methods proposed in this study show advances in both deep learning and AD progression detection. (1)
Regarding the DL proposal, first, we explored the role of late fusion of multimodal multivariate time series data using
BiLSTM models to improve the performance of DL models. Second, we investigated the role of hybrid modeling of
DL feature extraction and regular ML classifiers. According to our results, we discovered that replacing the output
layer of DL models with more accurate classifiers such as RF improved the performance of the overall model. We
checked the performance of many regular ML classifiers for performing the classification step of the deep learning
model. In addition, we investigated the role of two popular fuzzy classifiers to do the same task. Third, we explored
the performance of multitask modeling to generate more accurate and stable DL models. We jointly trained models to
simultaneously predict seven CSs at M48. (2) Regarding AD progression detection, first, we utilized five popular time-
series modalities in addition to the baseline data to predict AD progression within 2.5 years from last visit. Each time
series modality was separately learned by a deep BiLSTMmodel and the resulting deep features of these heterogeneous
modalities were fused using another deep BiLSTM model. The resulting features were further fused with the learned
features from the baseline data. AD progression detection was explored using DFBL and MRBL techniques. Second,
we studied the role of different MRI feature sets to enhance the performance of every model. The discriminating
capabilities of the volume, cortical thickness, hippocampus region, surface areas, temporal region, and all MRI features
were explored for both the DFBL and MRBL techniques. Third, we utilized the feature importance, fuzzy classifiers,
and DT to interpret the decisions of DL models. To the best of our knowledge, the proposed models have not been
explored in the AD domain before. In addition, we achieved accurate, stable, and interpretable results. El-Sappagh et
al., [83] proposed a DL model for AD progression detection based on a multimodal multitask paradigm. The current
proposal can be considered as an extension to that by El-Sappagh et al. [83]. As an example of the extensions, in the
MRBL, we predicted more CSs using multitask modeling and utilized a different fusion mechanism by using multiple
layers of decision fusion based on BiLSTM. Table 7 shows a comparison of models from the most recent literature
on AD progression detection. As can be clearly seen, all previous studies have concentrated on a single narrow area
for their evaluations. For example, [6, 42, 82, 74, 84] modeled AD progression as a simple binary classification task.
The majority of the AD studies are mainly based on the analysis of the MRI data [26, 30, 57, 65, 74, 84, 85, 87,
88, 90, 92, 96]. The deep learning models proposed for dealing with baseline MRI data are mostly based on a CNN
architecture [30, 42, 84, 92]. Time-series data analysis is not popular in the AD domain because there are not enough
data and the data has long time steps in between. Lee et al. [6] proposed a binary classifier based on the early fusion of
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Table 7
A comparison with the literature studies.

Study Subjects Tasks
(classes)

Reg.
tasks

Modality Fusion Time
steps

Performance (%) Method

[6] 1618 1 (2) - D, MRI, CSs,
CSF

Early 4 Accuracy (81%) GRU

[26] 896 1 (2) - MRI - - Acuracy (CN/MCI: 78.8%) Gaussian
process

[30] 1984 1 (4) 4 MRI Late - Accuracy (4-classes: 51.8%), RMSE (CDRSB,
ADAS 11, ADAS 13, MMSE: 1.666, 6.2, 8.537,
2.373)

CNN

[42] 785 2 (2) - MRI, D, N, and
APOe4

Early - Accuracy (sMCI/pMCI: 86%, CN/AD: 100%) CNN

[57] 1105 1 (2) - MRI - 10 Accuracy (AD/CN: 93.5%, CN/MCI: 69.7%,
MCI/AD: 79.8%, 3-classes: 77.7%)

LSTM

[58] 488 1 (3) 1 CSs, PET, MRI,
CSF

Early - Accuracy (3-classes: 83.0%), R2 = 0.874 SVM,
Ridge

[65] 485 1 (3) - MRI - - Accuracy (CN/AD: 0.94%, MCI/AD: 87%,
CN/MCI: 95%, 3-classes: 82%)

LR, KNN,
SVM,
DT, RF

[82] 237 1 (2) - 10 modalities Early - Accuracy (73%) SVM
[74] 830 2 (2) - MRI - 6 Accuracy (AD/NC: 91.33%, pMCI/sMCI: 71.71%) Stacked

CNN-
BGRU

[83] 1536 1 (4) 4 MRI, PET, CSs,
N

Late 15 Accuracy (4-classes: 92.62%), MAE(FAQ, ADAS,
CDR, MMSE: 0.107, 0.076, 0.075, and 0.085)

Stacked
CNN-
BiLSTM

[84] 694 1 (2) - MRI - - Accuracy (CN/AD: 86.60%, CN/pMCI: 77.37%,
CN/sMCI: 63.04%, AD/pMCI: 60.97%, sMCI/AD:
75.06%)

CNN

[85] 458 1 (4) 4 MRI - - Accuracy (CN/AD: 93.01%, pMCI/sMCI: 75.00%) SVM
[86] 906 1 (3) - MRI, AV45 PET Early - Accuracy (CN/sMCI: 79.25%, 3-classes:75.28%,

sMCI/pMCI/AD: 67.69 %)
GDCA

[87] 449 1 (2) - MRI Late
fusion

- Accuracy (CN/AD: 88.9%, CN/MCI: 76.2%) CNN,
DenseNet

[88] 400 1 (4) - MRI Early - Accuracy (4-classes: 61.9%) RF
[89] 321 1 (2) - MRI and N Early 6 Accuracy (MCI/AD: 78% baseline, 85% time series) LDA
[90] 828 1 (4) - MRI - - Accuracy(4-classes: 83.01%) ResNet
[91] 1051 1 (2) - FDG-PET - - Accuracy (NC/AD: 93.58%, sMCI/pMCI: 81.55%,

sMCI/pMCI: 82.51%)
DNN

[92] 229 1 (2) - MRI - - Accuracy (sMCI/pMCI: 75%, CN/AD: 99%, CNN
[93] 756 1 (2) - MRI, CSs Early - Accuracy( sMCI/pMCI: 87%) Naïve

Bayes
[94] 475 1 (3) - MRI - - Accuracy (MCI/AD: 81.3%) two stage

classifiers
[95] 290 1 (2) - CSF, CSs, MRI Early - Accuracy (sMCI/pMCI: 86.4%) SVM
[96] 509 1 (2) - MRI - - Accuracy (CN/ AD: 84%, CN/pMCI: 79%,

sMCI/pMCI: 62%)
Ensemble
CNN

[97] 1029 1 (4) - C, CSs, MH - - Accuracy (3-classes: 87.69%, 4-classes: 83.68%) LR, KNN,
SVM,
DT, RF

This
work

1371 2 (3) 7 MRI, PET, CSs,
N, NP, D

Late 4 Accuracy (3-classes: 84.95% (MRBL), 86.08%
(DFBL))

Hybrid/
multitask
BiLSTM

4-classes:CN/sMCI/pMCI/AD, 3-classes:CN/MCI/AD, D:Demographics, N: Neuropsychological, NP:Neuropathology,
MH: Medication History, C: comorbidities.

demographics, MRI, CSs, and CSF data. This study collected four time-steps and achieved 81% accuracy using a GRU
model. Cui et al. [74] utilized a stacked CNN-BGRU to build a binary classifier based on MRI data only. The model
achieved an accuracy of 91.33% for AD vs. NC and 71.71% for pMCI vs. sMCI tasks. El-Sappagh et al., [83] utilized
a longer time series of 15 time-steps; however, the authors did not use a gap between the last observed data and the
prediction time step. Platero and Tobar [89] used six time-steps and Hong et al. [57] used ten time-steps. Most time-
series data analysis utilized RNNmodels [6, 57, 83, 74, 89]. Due to space restrictions, we will not discuss the details of
every study, Table 7 provides a nice comparison of ninemetrics and provides themost critical features from every study.
The proposed model can be used as a starting point to build a clinical decision support system for Alzheimer’s disease
progression detection. The model is more accurate than state-of-the-art studies. In addition, the model could provide
the explainability of the suggested decisions. Moreover, the proposedmodel is medicallymore intuitive than the current
literature because it is based on the multimodal longitudinal data of different critical modalities including MRI, PET,
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neuropsychological battery, cognitive sub-scores, and neuropathology. Several baseline features have been combined
in the model to support the model providing more robust decisions. The proposed model can provide customized
and individualized decisions based on the patient’s complete profile. Although our model provides an advanced point
in the fields of AD management and deep learning, the model still needs further improvements to be used in real
environments. The interoperability of the clinical decision support system with the hospital information systems is
complex and needs further investigation. The more comprehensive explainability techniques model decisions such as
ontology and case-based reasoning, neuroimage visualization, and knowledge-based systems should be considered in
future work.

6. Conclusion
In this paper, we proposed and compared two BiLSTM-based deep learning models (i.e., MRBL and DFBL mod-

els) for AD progression detection. The models are based on the fusion of multimodal time series data collected from
the ADNI dataset. The integrated time series data includes neuroimaging (i.e. MRI, PET), cognitive subscores, neu-
ropathology, and neuropsychological battery data. In addition, we explored the role of different MRI features to im-
prove the prediction performance. The extracted deep features from the deep BiLSTM model were used to train the
MRBL and DFBL models. The MRBL model is based on the fusion of the learned deep features and the patient de-
mographics at baseline. It is based on a multitask modeling paradigm, where the model has been optimized to learn
seven medically related regression tasks. Each task is responsible for predicting a specific cognitive score at month 48,
i.e. 2.5 years after final observation. The collected scores at M48 are used to predict the AD progression at that time.
We compared multiple models (SoftMax, FURIA, MOEFC, RF, DT, SVM, GM, and NB) to predict AD progression
based on these collected scores. The RF ensemble classifier achieved the best average results of Accuracy= 80.30%,
Precision= 81.65%, Recall= 80.80%, and F1-score= 81.19%. The predicted scores at M48 can be used to build an
explainable model, which facilitates domain experts to understand why the model has taken a specific decision. We
optimized DT and fuzzy classifiers (FURIA and MOEFC) to predict AD progression. These models achieved good
performance, and they are interpretable at the same time. On the other hand, the DFBLmodel is a hybrid BiLSTM-ML
model, where BiLSTM is used to extract deep features from the multimodal time-series data, and the ML classifier is
optimized to perform the classification task. The architecture was compared when using the regular SoftMax classifier
to when using popular ML classifiers like SVM and RF. RF achieved better average performance (i.e. Accuracy=
82.63%, Precision= 84.68%, Recall= 84.80%, and F1-Score= 84.73%) than SoftMax. These results highlight a pos-
sible role for ML models to work as classifiers that are integrated with deep learning architectures. Although the
DFBL architecture is more accurate than the MRBL architecture, the latter is more interpretable. Accordingly, the
MRBL architecture is more trustful and acceptable by medical experts who usually prefer balanced models (i.e., mod-
els which achieve acceptable performance but provide users also with explainable outcome). The impact of fine-tuning
the proposed models as well as evaluating the models run time complexity will be explored in the future work.
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