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Abstract

This study aims to predict head trauma outcome for Neurosurgical patients in children,

adults, and elderly people. As Machine Learning (ML) algorithms are helpful in healthcare

field, a comparative study of various ML techniques is developed. Several algorithms are uti-

lized such as k-nearest neighbor, Random Forest (RF), C4.5, Artificial Neural Network, and

Support Vector Machine (SVM). Their performance is assessed using anonymous patients’

data. Then, a proposed double classifier based on Henry Gas Solubility Optimization

(HGSO) is developed with Aquila optimizer (AQO). It is implemented for feature selection to

classify patients’ outcome status into four states. Those are mortality, morbidity, improved,

or the same. The double classifiers are evaluated via various performance metrics including

recall, precision, F-measure, accuracy, and sensitivity. Another contribution of this research

is the original use of hybrid technique based on RF-SVM and HGSO to predict patient out-

come status with high accuracy. It determines outcome status relationship with age and

mode of trauma. The algorithm is tested on more than 1000 anonymous patients’ data taken

from a Neurosurgical unit of Mansoura International Hospital, Egypt. Experimental results

show that the proposed method has the highest accuracy of 99.2% (with population size =

30) compared with other classifiers.

1 Introduction

Traumatic brain injury (TBI) is a significant health challenge that causes death around the

world as it contributes to almost one third of all trauma-related mortalities [1, 2]. Surviving

patients often suffer from long-term physical and cognitive shortages, with devastating conse-

quences for the patients and their families [3]. Studies found that head injury (HI) is a com-

mon reason for being admitted to the emergency department with the highest rates of TBI–
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related visits occurring among children and senior citizens [2]. It may damage a nerve tissue

and cause disorder of consciousness, vision problems, headaches, and sleep issues [4]. Reports

show that nearly 5.3 million people in USA alone have functional disabilities and over 10 mil-

lion people worldwide were admitted to hospitals or deceased [3, 5] as a result of falling, road

accidents or sports [6]. For instance, Sports and military people may have been exposed to

recurrent HI situations that cause risk of Alzheimer or multiple sclerosis diseases [7–11].

Traumatic brain injury assessment has a number of complications and difficulties. Several

researchers exerted too much effort in attempt to classify TBI. Recently, Machine Learning

(ML) is gaining popularity in the medical field. It helps to understand patients’ conditions and

develop prediction models for better treatment [12, 13]. ML algorithms can process a vast

number of attributes in datasets and offer better classification accuracy [14, 15]. Machine

learning can be used to develop prediction models for medical datasets. With the help of fea-

ture selection techniques, it can reduce dimensionality in the dataset by determining the most

important attributes [12, 16].

The main aim of this paper is to predict the status outcome of Neurosurgical patients with

high accuracy and employ necessary features. In this regard, known machine learning algo-

rithms were used to detect neurosurgical patient outcome. Moreover, Henry Gas Solubility

Optimization (HGSO) was employed with Aquila Optimizer (AQO). Comparative study of

different ML techniques such as K-NN, Random Forest (RF), C4.5, ANN, and SVM classifiers

was carried out. The comparative study experimented “with and without the optimized

HGSO”.

Later, a new method for patients’ outcome status prediction was proposed. Its accuracy, F-

measure and sensitivity were calculated. Finally, it was found that the hybrid prediction model

based on SVM & RF with the optimized HGSO algorithm has the highest accuracy.

The main contributions of this research are as follows:

1. A series of experiments are conducted over the mentioned neurosurgical dataset regarding

the problem of feature selection and classification using various machine learning algo-

rithms with HGSO to evaluate the efficiency of the proposed HGSO. The results of these

experiments may serve as important inputs for further research.

2. HGSO is able to avoid local optima and maintain the balance between the exploration and

exploitation phases compared to other competitive metaheuristic algorithms.

The remainder of this paper is structured as follows: The next section discusses the recent

related research. Section three discusses the materials and methods. Section four talks about

the experimental design of the study. In section five, the results and the comparative analysis

of the different classifiers. The conclusion is given in section seven.

2 Literature review

Hale et al. [17] used ANN to accurately predict six months outcomes in pediatric patients with

TBI by comparing their ANN analysis to both conventional statistical models and predictive

models based on CT classification schemes. Furthermore, they discuss the evolution of pre-

dicting the outcome of patients with TBI and delineate the ANN approach for medical diagno-

sis, prognosis, and management [18].

Tunthanathip et al. [19] predicted surgical site infection (SSI) after neurosurgical opera-

tions using decision trees (DT), Naive Bayes (NB) with Laplace correction, KNN, and ANNs.

They tested the algorithms on 1471 patients who had undergone neurosurgical operations at

tertiary care hospitals between 2010 and 2017. NB algorithm is highlighted as an accurate ML
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method with 63% sensitivity at, 87% specificity, 29% positive predictive value, 96% negative

predictive, and 76% area under the receiver operating characteristic curve (AUC).

Raju et al. [20] used ML algorithms to train and optimize outcomes of neurological signals

by monitoring vital signs or other electrophysiological indicators (motor evoked potentials) to

provide feedback and improving modulation control. Scheer et al. [21] predicted major com-

plications in adult spinal deformity surgery by applying multiple bootstrapped decision trees

on available patients. The model achieved an AUC of 0.89 and accuracy of 87% at internal vali-

dation. However, no sensitivity or specificity were reported [22].

In a recent Swiss study exploring the attitudes of neurosurgeons toward ML, Staartjes et al.

[22] found that 29% of the 362 participants surveyed were already implementing ML into their

practice and a further 31% using it for research purposes. ML assisted neurosurgeons through

improving the preoperative and intraoperative decision-making process, enhancing objectivity

in the diagnosis, and anticipating complications [23, 24].

Abujaber et al. [25] used logistic regression (LR) and ANN to predict the in hospital mortal-

ity for 785 adult patients on mechanical ventilation following moderate to severe TBI. They

used their demographic characteristics, injuries and CT findings as predictors. The LR model

achieved 87% accuracy and 90.5% area under the receiving-operating characteristic curve

(AUROC) while the ANN achieved accuracy and AUROC of 80.9% and 87.5% respectively.

Mofatteh [26] article reviewed some studies in ML for multiple neurosurgical domains.

Some of the reviewed papers used ML to classify lumbar disk degeneration using MRI scans

from healthy to severely abnormal disks. Other papers utilized ML to cluster patients suffering

from osteoporotic vertebral fracture based on their pain progression. Additionally, ML helped

diagnosing pediatric posterior fossa tumors by categorizing them into the primitive neuroecto-

dermal tumor, astrocytoma, or ependymal with 72% accuracy compared to 73% accuracy of

neuroradiologists. Further studies showed that ANN predicted the glioma according to the

World Health Organization grade better than radiologists. Beyond tumor diagnosis, ML out-

performed physicians with 82.2% to 62.2% accuracy in predicting the presence of abnormal

features in CT scans of pediatric TBI patients [26].

Other studies tried to apply ML methods to neuroimaging data to assist with stroke diagno-

sis. Used SVM in resting-state functional MRI data, SVM can correctly classify patients with

stroke with 87.6% accuracy. Kamnitsas et al. [27] tried three-dimensional CNN for lesion seg-

mentation in multimodel brain MRI. They also used fully connected conditional random field

model for final postprocessing of the CNN’s soft segmentation maps. Rondina et al. [28] ana-

lyzed stroke anatomical MRI images using Gaussian process regression, and found that the

patterns of voxels performed better than lesion load per region as the predicting features. ML

methods have also been applied to analyze CT scans from patients with stroke.

Thornhill et al. [29] used linear discriminant analysis, artificial neural network and SVM to

classify lesion after stroke and carotid plaque on the CT imaging, the accuracy for each method

varies between 65.2% and 76.4%. Asadi et al. [30] analyzed 107 patients of acute anterior or

posterior circulation stroke via ANN and SVM. The research obtained prediction accuracy

above 70%. They also used ML techniques to identify factors influencing outcome in brain

arteriovenous malformation treated with endovascular embolization with 97.5% accuracy. Bir-

kner et al. [31] used an optimal algorithm to predict 30-day mortality and obtained more accu-

rate prediction than existing methods. Similarly, King et al. [32] used SVM to predict stroke

mortality at discharge. In addition, they proposed the use of the synthetic minority oversam-

pling technique to reduce the stroke outcome prediction bias caused by between-class imbal-

ance among multiple data sets [5].

In 2017, Subasi et al. [33] proposed an algorithm to detect epileptic seizures in Electroen-

cephalography (EEG) using SVMs and Genetic Algorithms which proved an accuracy of
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99.38% on the EEG dataset. However, Avcu et al. [34] used Convolutional Neural Network

(CNN) to detect seizures using only two channels with an accuracy of 93.3% [35].

Prashanth et al. [14] presented an ML system that can accurately predict Parkinson’s disease

with an accuracy of 96.40%. Rastegar et al. [36] predicted disease progression using serum

cytokines from one time point (baseline); then, after one year, to predict the outcome for two

years [35].

Buchlak et al. [23] article compared the top three most frequently applied ML algorithms in

neurosurgery namely LR, ANN, and SVM. They found that the accuracy and specificity of

ANN, LR, and SVM differ significantly where ANN algorithm demonstrated higher accuracy

than LR while SVM demonstrated higher specificity than LR. Nevertheless, they found no sig-

nificant difference in AUC and sensitivity among ANN, LR, and SVM [23].

Vivaldi et al. [37] suggested that EEG data-driven ML using SVM and KNN models can be

a useful tool to distinguish between TBI and normal patients. The results showed 94% accuracy

and 94% sensitivity in cross validation while it showed 76% accuracy and 80% sensitivity in

independent validation.

Brossard et al. [38] article focused on the classification and the segmentation of lesions.

They used manual and automated analysis of CT scans. The study developed an automated

determination of traumatic brain lesions and medical-decision process using supervised learn-

ing and CT scans for patients with TBI. The method enhanced the quantitative analysis of CT

images and offered a new perspectives in clinical care of TBI.

Noor and Ibrahim [39] reviewed 40 different studies that evaluated ML algorithms using

quantitative EEG (qEEG) predictors that predict outcome in patients with moderate to severe

TBI. The most common ML technique used was LR with the highest accuracy. However, the

algorithms varied depending on the type and number of qEEG predictors selected in each

model. The qEEG variability for the relative and absolute band powers were the most common

qEEG predictors included in the models followed by total EEG power of all frequency bands,

EEG-reactivity, and coherence. Model performance was measured by AUROC rather than by

accuracy rate. Various ML models demonstrated great potential especially using qEEG

predictors.

Radabaug et al. [40] tried to overcome a lack of translation from laboratory research to clin-

ical application using SL. They built a clinically-relevant evaluation metric that treats a mem-

ory retention task (i.e. probe trial) as the class label. They used univariate statistical analysis on

an Operation Brain Trauma Therapy dataset. The prediction accuracy was 67% by NB on the

borderline elimination dataset.

Thanjavur et al. [41] introduced a deep learning long-short term memory based recurrent

neural network. The algorithm was able to distinguish between non-concussed and acute post-

concussed adolescent athletes using only short (i.e. 90s long) samples of resting state EEG data

as input. The network was trained and validated using data from 27 male, adolescent athletes

with sports related concussion and benchmarked against 35 non-concussed adolescent ath-

letes. During rigorous testing, the classifier consistently identified concussions with an accu-

racy greater than 90% and achieved an ensemble median Area Under the Receiver Operating

Characteristic Curve (ROC/AUC) equal to 0.971 [36].

Siyar et al. [42] outlined the first application of ML to distinguish “skilled” and “novice”

psychomotor performance during virtual reality brain tumor resection tasks. The tasks remove

a series of virtual brain tumors without causing injury to the surrounding tissue. The applica-

tion fed features to KNN, Parzen Window, SVM, and Fuzzy KNN. Additionally, sets of 5 to 30

selected features were provided to the classifiers. A working point of 15 premium features

resulted in accuracy values as high as 90% using SVM [42].

PLOS ONE HGSO double machine learning classifier for neurosurgical patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0285455 May 11, 2023 4 / 22

https://doi.org/10.1371/journal.pone.0285455


In a recent study by Vishwanath et al. [43], various ML algorithms were used. Namely,rule-

based algorithms of decision trees, random forest, neural network, SVM, KNN, and CNN to

classify TBI data obtained from the proposed mouse model. The use of CNN for sleep-wake

data yielded the highest accuracy indicating a promising method for accurate identification of

the relevant brain-based biomarkers in TBI. The results obtained for rule-based methods and

CNN are comparable. Overall, the highest classification accuracy of 92.03% was obtained by

CNN when the entire EEG signal (both wake and sleep stages) was used.

Susheela and Ajit [44] introduced an improved Henry gas solubility optimization in which

the selected features were the input to the classifiers. They were used to identify histopatholog-

ical images. There were 23 benchmark functions employed for the performance evaluation of

the enhanced Henry gas solubility optimization. ICIAR’s grand challenge dataset and the

breast cancer cell dataset were used to test the suggested feature selection approach. Using this

feature selection strategy, the two datasets were reduced by 60% on average.

To improve classification accuracy, Nabil Neggaz et al. [45] proposed an approach for

dimensionality reduction based on the Henry gas solubility optimization (HGSO) method for

selecting significant features. The suggested technique employs the expert systems of k-nearest

neighbour (k-NN) and support vector machine (SVM) to assess the chosen set of features, and

it is compared to well-known meta-heuristic algorithms. Overall, the empirical analysis sug-

gests that the proposed approach is significantly effective by producing 100% accuracy on clas-

sification problems with more than 11,000 features.

Thus, ML-based algorithms are promising in TBI to predict patients’ outcomes more accu-

rately than conventional analysis. This is due to their high diagnostic accuracy, analysis, and

detection. Therefore, ML opens the door to prospective research areas in brain tumors and

therapeutics that were never otherwise possible [46, 47].

ML can be used to develop prediction models for medical datasets. With the help of feature

selection techniques, it can reduce dimensionality in the dataset by determining the most

important attributes [15, 48].

3 Materials and methods

This section shows a discussion for different ML techniques, which is known as data-driven AI

[33, 49]. Moreover, the mathematical formulation of the used feature selection method to

reduce the number of features is introduced.

3.1 Data collection

In this research, Table 1 describes the training data that was collected from a Neurosurgical

unit at Mansoura International Hospital in Egypt. There are 1160 patients. The medical attri-

butes were retrieved while the identity of the patients was anonymized.

3.2 Data preprocessing

Generally, real data is incomplete, inconsistent and noisy. Therefore, it is crucial to perform

preprocessing activities to prepare the data. The preprocessing includes data cleaning, trans-

formation, extraction and coding of attributes to perform normalization. The dataset contains

data records of 40 attributes for various patients. Personal data such as name, address, and

phone number attributes were removed by the hospital prior to providing the data for research

resulting in a total of 37 medical attributes.
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3.3 Methods

The proposal for this work was submitted to the research and ethical committee at The Gen-

eral Organization for Teaching Hospitals and Institutes (GOTHI: https://gothi.gov.eg/). It

does not include any details regarding the participants’ consent as the written consent was

obtained by the hospital collecting the data. Anonymized data was provided to the authors.

The research does not include any minors. It earned the IRB approval number HS000106.

3.3.1 Aquila Optimizer (AQO). Aquila Optimizer [50] is a revolutionary population-

based optimization approach that is based on the Aquila’s behavior while it hunts. Therefore,

it is possible to express the optimization processes of the proposed AQO algorithm in four

Table 1. Patient features and their domain.

Domain Features

Personal Data Name, Age, Gender,

Address, Phone, Special Habits

History Type of head injury,

Mode of Trauma

Previous Admission

Comorbidity

Previous Operation

Clinical Data Pulse/min.,

Temperature,

Blood Pressure (mmHg)

Respiration/min.

Admission GCS /15: EO VR MR

Neurological deficit Quadriparesis

Pupils

Cranial Nerves

Associated injuries Spinal, Abdominal

Chest, Long bones

Laboratory Data Blood Picture

Electrolytes

Blood Sugar

Renal

Hepatic

Others

Radiology Skull Fractures

DAI

Concussion

Contusions

EDH Location / Volume

SDH Acute / Chronic

SAH (Subarachnoid hemorrhage)

ICH Location / Volume

Pneumocephalus Location/amount

Degree of Head Injury -

Intervention Medical Surgical Measure the improvement—for 2 weeks

GOS Evaluation at discharge after 2 weeks

Outcome Mortality– Morbidity—The same—Improved

https://doi.org/10.1371/journal.pone.0285455.t001
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ways: high soar with vertical stoop; contour flight with short glide attack; low flight with slow

descent assault; and swooping by walk and capture prey, all of which may be applied to the

search space.

To begin the process of AQO, the population of potential solutions (X) is created stochasti-

cally between the upper bound (UB) and lower bound (LB) of the given issue. The optimiza-

tion rule is derived from this population. During each iteration, the best-obtained solution is

found to be an approximate optimum solution for the problem at hand.

The AQO algorithm can transfer from exploration steps to exploitation steps using different

behaviors based on the condition: if t � 2

3
T the exploration steps will be executed. Otherwise,

the exploitation steps will be executed. As a mathematical optimization paradigm, Aquila’s

behavior is characterized by discovering the optimum solution given a set of specified restric-

tions. AQO’s mathematical model is presented in the following manner.

Generation of initial population. In order to demonstrate the effectiveness of the provided

AQO, the tested benchmark data is first divided into a training set consisting of 80% of the

data and a testing set consisting of 20% of the data. The following Equation creates the initial

population X, which is made up of N solutions:

Xi ¼ LBþ randð1;DÞ � ðUB � LBÞ ð1Þ

Where D is the number of features. rand(1, D) is a random D-dimensional vector. The search

space’s perimeters are symbolized by LB and UB.

Updating population. The following equation Eq 2 transforms Xi, i = 1, 2, . . ., N into its

Boolean value BXi at the beginning of this step.

BXi ¼
1 if Xij > 0:5

0 otherwise

(

ð2Þ

It is possible to limit feature selection based on Eq 2 result by discarding the useless features

that have zero values in BXi. Once the fitness value is determined, it may be calculated using

Eq 3 below:

Fiti ¼ l� gi þ ð1 � lÞ �
jBXij

D
ð3Þ

This is followed by a determination of the best fit and its associated best agent Xb. Then add

the AQO operators to the present agents.

Terminal criteria. At this step, the stopping criteria is evaluated. If it is not fulfilled, the

update stage is repeated. Otherwise, the learning process is finished, and Xb is used as the result

to reduce the testing set.

Validation stage. It is necessary to minimize the testing set characteristics in order to assess

how well AQO performs as a feature selection strategy. Finally, several performance indicators

are used to evaluate the classification process quality based on the reduced characteristics.

3.3.2 Henry Gas Solubility Optimization (HGSO). In 2019, Hashim et al. [51] suggested

a metaheuristic algorithm derived from William Henry’s law of physics which describes gas

particles in a liquid with partial pressure namely HGSO. Henry’s law depends on the dissolved

gas amount, liquid type and volume at a specific temperature. For instance, this phenomenon

exists on carbonized beverages cans. (Fig 1) shows huddling behavior of gas particles with 2

different pressures [51–53]. As shown in (Fig 1), when the pressure rises, extra gas particles

dissolve till reaching the equilibrium again.
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Henry suggested the following equation as the gas solubility Sg proportions directly with the

gas partial pressure Pg:

Sg ¼ H � Pg ð4Þ

where H is Henry’s constant.

Henry’s law constants affected by the temperature changes, Van’t Hoff equation describes

it:

d lnH
dð1=TÞ

¼
� 5solE

R
ð5Þ

where (5solE) is the dissolution enthalpy, R is the gas constant, and the temperature T depends

on H.

After integrating Eq 4, it becomes:

HðTÞ ¼ eðB=TÞ � A ð6Þ

Where A and B are parameters that depends on H and T = 298.15K.

HðTÞ ¼ Hy � exp
� 5solE

R
�

1

T
�

1

Ty

� �� �

ð7Þ

when the dissolution enthalpy5solE is a constant, the Van’t Hoff equation is valid. therefore,

Fig 1. Henry gas solubility bases.

https://doi.org/10.1371/journal.pone.0285455.g001

PLOS ONE HGSO double machine learning classifier for neurosurgical patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0285455 May 11, 2023 8 / 22

https://doi.org/10.1371/journal.pone.0285455.g001
https://doi.org/10.1371/journal.pone.0285455


Eq (4) becomes:

HðTÞ ¼ exp � C �
1

T
�

1

Ty

� �� �

�Hy ð8Þ

Equations Eq 4 through Eq 8 are used to calculate the solubility in liquids for low solubility

gas.

3.3.3 Mathematical model of HGSO algorithm. The algorithm used in this research

mimics the gas behavior in equilibrium of exploitation, exploration, and escapes the local

optima of the HGSO inspiration in the search space.

Initialization: The gases number N and their positions are set according to Eq 9.

Xiðt þ 1Þ ¼ Xmin þ r � ðXmax � XminÞ ð9Þ

where Xi is the ith gas position in population N, t is the time of iteration, r is a randomly chosen

number between 0 and 1. The problem bounds are Xmin and Xmax.
The values of the following terms are set according to Eq 10 where i is the gas number, Hj(t)

is Henry’s constant of type j. Pi,j is the partial gas pressure i in the j’s cluster,5solE/R is a num-

ber named Cj.

HiðtÞ ¼ l1 � randð0; 1Þ

Pi;j ¼ l2 � randð0; 1Þ

Cj ¼ l3 � randð0; 1Þ

ð10Þ

where the constants l1 = 5E − 02, l2 = 100, l3 = 1E − 02.

Clustering: The population gases are distributed to equivalent clusters with similar gases

according to the gas type’s number and the same value of Hj.

Assessment: To detect the best gas cluster which helps to reach the maximum equilibrium

state than other clusters in the same type, each gas cluster j is evaluated and the clusters are

ordered to find the optimal cluster for this swarm.

Update Henry’s Coeffiecient: The update of the coefficient happens according to the fol-

lowing equation where Hj is Henry’s coefficient for cluster j, T is the temperature, Tθ = 298.15

and iter is the total number of iterations.

Hjðt þ 1Þ ¼ HjðtÞ � exp � Cj �
1

TðtÞ
�

1

Ty

� �� �

;TðtÞ ¼ exp
� t
iter

� �

ð11Þ

Update the solubility of Gas:

Si;jðtÞ ¼ K � Hjðt þ 1Þ � Pi;jðtÞ ð12Þ

where Si,j is the ith gas solubility in the jth cluster, Pi,j is the partial pressure on gas i in cluster j
and K is a constant.

Change the position: This happens according to the solubility from the objective function:

Xi;jðt þ 1Þ ¼ Xi;jðtÞ þ F � r � gðXi;bestðtÞ � Xi;jðtÞÞ

þ F � r � aðSi;jðtÞXbestðtÞ � Xi;jðtÞÞ
ð13Þ

g ¼ b� exp �
FbestðtÞ þ �
Fi;jðtÞ þ �

 !

ð14Þ

where Xi,j is the position of gas i in cluster j, r is a random constant and t is the iteration time.
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The best gas i in cluster j is denoted by Xi,best, and Xbest is the best gas in the swarm. The param-

eters Xi,best and Xbest are used to achieve the balance between the exploration and exploitation.

Moreover, Y is the interaction ability of gas i in cluster j and other gases in the same cluster, α
is the other gases effect on gas i in cluster j = 1 and β is a constant. Fi,j is the fitness of gas i in

cluster j, while Fbest is the fitness of the best gas in the system. F denotes the direction flag for

the search agent that offers diversity = ±.

Escape from the local optima: The agents are ordered and the worst agents number Nw is

selected according to the following Equation:

Nw ¼ N � ðrandðc2 � c1Þ þ c1Þ; c1 ¼ 0:1 and c2 ¼ 0:2 ð15Þ

where N is the search agent number.

Modify the worst agent position:

Gi;j ¼ Gminði;jÞ þ r � ðGmaxði;jÞ � Gminði;jÞÞ ð16Þ

where Gi,j is the position of gas i in cluster j, Gmin and Gmax are the problem boundaries while r
is a random number.

Algorithm 1: HGSO algorithm pseudo code
Begin: Xi(1, 2, 3. . .N, gas types number i, Hj, Pi,j, Cj, l1, l2, and l3
Compute: Partition the agents of population into clusters of gas types
which have the same value of Henry’s constant Hj.
Compute: Assess each cluster j.
Compute: Find the value of best gas Xi,best for all clusters, also the
value of best search agent Xbest.
repeat
for each Xbest do
update the values for all Xbest’s using Eq 13

end
Modify: Hj for each type of gas using Eq 11.
Modify: solubility value for each gas using Eq 12.
Compute: Order and determine the worst agents number using Eq 15
Modify: the value of the worst agents position using Eq 16.
Modify: Xi,best and Xbest.

until t < maximum iterations number;
Compute: t = t + 1
return Xbest

The complexity of HGSO algorithm is of order: O(tnd) × O(obj), where t is the maximum

number of iterations, n is the number of solutions, d is the number of variable, and obj is the

objective function.

The key control parameter of HGSO is the balance between exploration (the increased

mean value of distance via population dimension) and exploitation (the reduced mean value)

phases. To determine the dimension-wise variety through search iterations, the following

equation is used:

1

Divj
¼

1

N

XN

i¼1

medianðxjÞ � xji; Divt ¼
1

N

XD

j¼1

Divj ð17Þ

where, Xj
i is the jth dimension of ith population individual, median xj is the median value of jth

dimension of the population with size N, Divi is the mean variety measure for dimension j, and

Divt is the average of the D dimensions for iteration t where t = 1, 2, 3, . . ., iter. When the pop-

ulation diversity is determined for maximum iterations, the search processes iter calculates the

percentage of exploration and exploitation in the the search process as shown in the following
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equations:

Exploration% ¼
Divt

Divmax
� 100 ð18Þ

Exploitation% ¼
jDivt � Divmaxj

Divmax
� 100 ð19Þ

where Divmax is the maximum variety of iterations t. Finally, HGSO can achieve a balance

among the factors.

4 Experimental setup

4.1 Design

The goal of the present study is to provide an efficient feature selection model using ML tech-

niques based on AQO optimized HGSO framework for developing a Neurosurgical prediction

model. Several ML techniques were examined. These techniques were investigated as a stand-

alone without the use of HGSO then compared to its counterparts after applying HGSO. To

determine the best performing technique that can be used in the prediction model, the frame-

work shown in (Fig 2) is developed.

Neurosurgical patient data set contains 3000 records of patients. The dataset is balanced

containing 800 records of patient having “mortality” outcome status, 700 records have “mor-

bidity” outcome status, 850 records have “the same” outcome status, and 650 records have

“improved” outcome status. The preprocessing activities were performed. To predict the status

outcome of Neurosurgical patients with high accuracy, after data set processing we have 2

cases.

• Case 1: K-NN, RF, C4.5, ANN, SVM, RF-SVM algorithms were applied and their perfor-

mance is evaluated.

• Case 2: feature selection technique (HGSO) is applied in conjunction with the algorithms

stated in Case 1 above.

4.2 Experiments

The techniques (K-NN, RF, C4.5, ANN, SVM, RF-SVM) were tested on the neurosurgical

dataset that is developed in this work. The proposed RF-SVM based on HGSO algorithm was

utilized. The evaluation metrics for (K-NN, RF, C4.5, ANN, and SVM) were tested with differ-

ent pop sizes (from 25 to 50) with and without using AQO-based HGSO classifiers were calcu-

lated. The results indicate that the double machine learning algorithm (RF-SVM) based on

HGSO algorithm can perform well in practice under (pop size = 30). Here the measurements

of the proposed algorithm are presented.

4.3 Evaluation metrics

This study was implemented using Python platform and a comparative analysis was per-

formed. The Recall, Precision, F-measure, Accuracy, and Sensitivity were defined as follows
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[54, 55]:

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð20Þ

Recall ¼
TP

TP þ FN
ð21Þ

Precision ¼
TP

TP þ FP
ð22Þ

F � measure ¼ 2�
Precision∗recall
Precisionþ recall

ð23Þ

where TP, FP, FN and TN represent True Positive, False Positive, False Negative, and True

Negative respectively.

Fig 2. Framework of the machine learning models trained and evaluated based one AQO with and without using

HGSO to classify patient status outcome.

https://doi.org/10.1371/journal.pone.0285455.g002
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5 Results and comparative analysis

In this section, a comparison between the accuracy of the proposed model with and without

applying feature selection technique is introduced. The comparative results of different

machine learning models are performed. It is found that the classification process affected by

several attribute values in the data. the importance of the features is explored by finding the

accuracy of the dataset. Five single classifiers (K-NN, RF, C4.5, ANN, and SVM) and one dou-

ble classifier (RF-SVM) were applied to the dataset. Then, reapplied again while based on

HGSO to determine if there is any enhancement in the prediction by implementing HGSO.

The best attributes for prediction were determined by the selected threshold value and the

accuracy of the different classifiers as summarized in Table 2 and illustrated in (Fig 3).

RF-SVM based on HGSO showed better results when compared with other classifiers. The

run parameters are shown in Table 3 while the results are shown in Table 4.

The chart in (Fig 4) highlights the differences in the F-measure while the sensitivity is

shown in (Fig 5). It clearly shows the importance of feature selection based on AQO HGSO in

the generated model.

Table 2. The accuracy for (KNN, RF, C4.5, ANN, SVM and RF-SVM) classifiers based on HGSO.

KNN RF C4.5 ANN SVM RF-SVM

0.962 0.926 0.924 0.959 0.961 0.992

https://doi.org/10.1371/journal.pone.0285455.t002

Fig 3. The accuracy for (KNN, RF, C4.5, ANN, SVM and RF-SVM) classifiers with and without using HGSO.

https://doi.org/10.1371/journal.pone.0285455.g003

PLOS ONE HGSO double machine learning classifier for neurosurgical patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0285455 May 11, 2023 13 / 22

https://doi.org/10.1371/journal.pone.0285455.t002
https://doi.org/10.1371/journal.pone.0285455.g003
https://doi.org/10.1371/journal.pone.0285455


The comparison between the 6 classifiers is recorded in Table 5 based on feature selection

model HGSO according to the average recall, precision, F-measure, accuracy and sensitivity.

As in Table 5 RF-SVM using 32 features had the smallest SD value among the tested methods

and the highest f-measure and accuracy, respectively.

As shown in (Fig 6), results indicate that RF-SVM is the best classification algorithm with

an accuracy of 99.2% (at pop size = 30).

Table 6 shows the average overall F-measure results of pop_size= 25, 30, 35, 40, 45, and 50

for K-NN, RF, C4.5, SVM, and RF-SVM both with and without HGSO model. As shown in

Table 6, pop_size = 30 outperformed at all results, and the average overall F-measure for

RF-SVM with AQO HGSO achieved 99.3%. It scored the best results.

6 Statistical tests

The statistical test analysis was conducted using Wilcoxon’s test based on accuracy metric. The

Wilcoxon test is a non-parametric test [56], therefore it has less assumptions than parametric

Table 3. Run parameters.

# runs Domain Range Log Epoch Pop Size Lsa Epoch

100 [-1,1] False 50 30 100

https://doi.org/10.1371/journal.pone.0285455.t003

Table 4. Comparison of classification model results.

Model Evaluation Measure Without HGSO HGSO

K-NN Recall 0.944 0.981

Precision 0.962 0.966

F-Measure 0.953 0.972

Accuracy 0.923 0.962

RF Recall 0.912 0.947

Precision 0.963 0.967

F-Measure 0.937 0.956

Accuracy 0.861 0.926

C4.5 Recall 0.893 0.947

Precision 0.952 0.967

F-Measure 0.926 0.956

Accuracy 0.891 0.924

ANN Recall 0.893 0.966

Precision 0.962 0.980

F-Measure 0.926 0.974

Accuracy 0.899 0.959

SVM Recall 0.965 0.982

Precision 0.962 0.984

F-Measure 0.965 0.979

Accuracy 0.947 0.961

RF-SVM Recall 0.983 0.987

Precision 0.983 0.986

F-Measure 0.983 0.993

Accuracy 0.976 0.992

https://doi.org/10.1371/journal.pone.0285455.t004
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Fig 4. RF-SVM has the largest values of F-measure.

https://doi.org/10.1371/journal.pone.0285455.g004

Fig 5. RF-SVM based on AQO HGSO sensitivity.

https://doi.org/10.1371/journal.pone.0285455.g005
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Table 5. Results of different parameters of ML classification models.

Model Measure HGSO # Features Min Max SD

K-NN Recall 0.981 30 0.94 0.99 0.025

Precision 0.966 0.92 0.98 0.03

F-Measure 0.972 0.93 0.99 0.03

Accuracy 0.962 0.88 0.97 0.045

RF Recall 0.947 30 0.87 0.96 0.045

Precision 0.967 0.93 0.98 0.025

F-Measure 0.956 0.92 0.96 0.02

Accuracy 0.926 0.91 0.95 0.005

C4.5 Recall 0.947 30 0.88 0.95 0.035

Precision 0.967 0.95 0.97 0.01

F-Measure 0.956 0.9 0.96 0.03

Accuracy 0.924 0.84 0.93 0.045

ANN Recall 0.966 30 0.87 0.95 0.04

Precision 0.980 0.94 0.96 0.03

F-Measure 0.974 0.990 0.99 0.045

Accuracy 0.959 0.83 0.99 0.08

SVM Recall 0.982 30 0.95 0.96 0.025

Precision 0.984 0.95 0.99 0.02

F-Measure 0.979 0.93 0.99 0.03

Accuracy 0.961 0.93 0.97 0.02

RF-SVM Recall 0.987 30 0.96 0.97 0.02

Precision 0.986 0.95 0.96 0.025

F-Measure 0.993 0.96 0.97 0.02

Accuracy 0.992 0.96 0.98 0.02

https://doi.org/10.1371/journal.pone.0285455.t005

Fig 6. Classification results for different number of pop_size (25–50) for each classifier employed: KNN, RF, C4.5, ANN, SVM, RF-SVM, without

HGSO (a) and with HGSO (b). (a) Results of Classification without HGSO. (b) Results of Classification with HGSO.

https://doi.org/10.1371/journal.pone.0285455.g006
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tests such as t-test. As a result, the Wilcoxon test is performed when the t-test for dependent

samples fails to meet its boundary criteria.

Wilcoxon test may be computed using the difference between the two dependent values.

The absolute value of the difference is utilized to determine the rankings once the difference is

computed. It is crucial to keep in mind the first indication of discrepancies. All experiments

were designed to be run 30 times with 10 solutions and 100 max iterations. (Fig 7), and (Fig 8)

compare the accuracy performance and the number of the selected features for ANN, K-NN,

RF, RF-SVM, SVM and C4.5 algorithms with and without HGSO over the selected dataset.

7 Conclusions

Recently, machine learning is being viewed as the most important field for the classification of

large datasets particularly in medical domain. Its techniques improve the capability of human

in treating large datasets by finding the important attributes in the dataset. This study explores

the importance of RF-SVM based on HGSO by performing different measurements in a

Table 6. Comparative analysis of machine learning models with different pop sizes.

Pop Size

Model 25 30 35 40 45 50

Without HGSO K-NN 0.948 0.923 0.954 0.949 0.952 0.941

RF 0.937 0.861 0.938 0.951 0.934 0.927

C4.5 0.926 0.891 0.928 0.953 0.925 0.929

ANN 0.911 0.899 0.929 0.952 0.951 0.909

SVM 0.950 0.947 0.959 0.952 0.951 0.945

RF-SVM 0.957 0.976 0.961 0.971 0.966 0.956

With HGSO K-NN 0.966 0.962 0.976 0.964 0.964 0.958

RF 0.954 0.926 0.964 0.968 0.956 0.947

C4.5 0.934 0.924 0.945 0.948 0.936 0.926

ANN 0.955 0.959 0.969 0.969 0.954 0.951

SVM 0.953 0.961 0.968 0.955 0.955 0.938

RF-SVM 0.961 0.992 0.973 0.962 0.967 0.953

https://doi.org/10.1371/journal.pone.0285455.t006

Fig 7. Convergence curve of used algorithms with HGSO over the selected dataset.

https://doi.org/10.1371/journal.pone.0285455.g007
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Neurosurgical dataset. The Recall, Precision, F-measure, Accuracy and Sensitivity of K-NN,

RF, C4.5, ANN, SVM, and RF-SVM classifiers were recorded and compared. The accuracy of

the classifiers ranged from 92.4% to 99.2%. The RF-SVM based on HGSO model produced the

highest accuracy and showed better results when compared with other classifiers.

Machine learning remains in the forefront of future studies in healthcare applications. It

can be used to identify and diagnose diseases based on ML ability to classify data. This not

only reduces the length of the diagnosis process but also reduces mistakes made by doctors. As

medical training takes a long time. The methodology applied here can be used for medical

imaging diagnosis which is promising where combination of data from multiple data sources

can lead to a different progression. Moreover, it will be interesting to implement the algorithm

on crowdsourcing data collection and analysis. Finally, there are various domains for ML

application in healthcare.
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