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Abstract: In recent years, underwater exploration for deep-sea resource utilization and development
has a considerable interest. In an underwater environment, the obtained images and videos undergo
several types of quality degradation resulting from light absorption and scattering, low contrast, color
deviation, blurred details, and nonuniform illumination. Therefore, the restoration and enhancement
of degraded images and videos are critical. Numerous techniques of image processing, pattern
recognition and computer vision have been proposed for image restoration and enhancement, but
many challenges remain. This survey presents a comparison of the most prominent approaches
in underwater image processing and analysis. It also discusses an overview of the underwater
environment with a broad classification into enhancement and restoration techniques and introduces
the main underwater image degradation reasons in addition to the underwater image model. The
existing underwater image analysis techniques, methods, datasets, and evaluation metrics are
presented in detail. Furthermore, the existing limitations are analyzed, which are classified into
image-related and environment-related categories. In addition, the performance is validated on
images from the UIEB dataset for qualitative, quantitative, and computational time assessment.
Areas in which underwater images have recently been applied are briefly discussed. Finally,
recommendations for future research are provided and the conclusion is presented.

Keywords: underwater image analysis; underwater image restoration; underwater image
enhancement; underwater datasets; underwater image quality evaluation

1. Introduction

An underwater environment is any area immersed in water, such as the ocean floor, a reservoir,
a basin, and a riverbed. Such environments are also found in lakes, ponds, dams, canals, and even
aquifers. Underwater environments are important because water covers almost 71 % of the earth’s
surface and provides [1] natural habitats for most living organisms. In addition, they are considered
a potential resource for the extraction of various minerals, such as silver, gold, copper, manganese,
and zinc. Therefore, exploring, developing, and protecting underwater resources have become active
research topics.

The clear interpretation and analysis of underwater videos and images offer important and
valuable information about the underwater world. They are important for domains such as underwater
archaeology, marine ecological research, naval military applications, and telecommunication cable
handling [2]. Consequently, the processing and analysis of underwater images are crucial in the
research on developing, exploring, and protecting underwater resources [3–9].
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During image acquisition, the poor visibility conditions in an underwater environment reduce the
obtained image quality, resulting in highly degraded, low-contrast, and noisy images. This limits its use
in many practical scenarios. Two solutions for obtaining clear underwater images are available. One
requires expensive specialized image acquisition hardware and the other applies image preprocessing
techniques for image enhancement and restoration allowing the generated image to be better displayed
when used in various applications.

Underwater images are captured using diverse methods. The moorings and buoys method
is used to monitor the water quality, the sea earth’s circumstances, and microorganisms in the
water. The basics of this method are to use cameras mounted on remotely operated vehicles (ROVs),
unmanned underwater vehicles (UUVs), autonomous underwater vehicles (AUVs), or an ocean sensor
network [10–12]. For better image quality, these vehicles are equipped with sensors, such as GPSs
and cameras to collect information about subaquatic minerals, coral reef ecosystems, or the deep sea
habitat. Figure 1 presents a selection of the types of equipment used in collecting and observing ocean
data.

Figure 1. Concept map of the ocean observation network.

There are other image capturing methods that depend on sonar and their quality depends on
the wavelength of the sounds used. Sonar emits these, then capture the underwater sound reflections
and converts them into images [13]. Using this image-capturing method helps researchers to study
underwater images efficiently.

Due to the above-mentioned circumstances with the underwater image acquisition process, the
obtained images must be preprocessed to better display during underwater image analysis. This is
accomplished by developing new underwater image processing and computer vision techniques [14].
Computer vision algorithms can effectively analyze and interpret underwater visual data, but this is
restricted by the limited visibility conditions resulting in low contrast and noisy images. Preprocessing
techniques are required to avoid these challenges and obtain clear, high-quality images. Image
preprocessing techniques are classified into two main groups; underwater image restoration and
underwater image enhancement [15].

The implementation of techniques for underwater image restoration mainly depends on physical
models. These physical models are important for many tasks, such as building the underwater image
degradation model, computing parameters for the model (e.g., diffusion, attenuation, or water turbidity
coefficients), and tackling the inverse problem. Performing these tasks requires prior knowledge and
assumptions about the environmental conditions. Mathematical models can be used to estimate the
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model parameters, but they are very complicated and computationally challenging. Conversely, the
underwater image enhancement techniques for providing clear images of suitable quality are based on
qualitative criteria. These techniques can improve image color and contrast much more simply and
quickly, without using physical models.

Many reviews on underwater image enhancement and restoration have been published. However,
these investigations focus on specific aspects related to underwater image analysis. [16] presented
a brief survey on underwater image enhancement. Other surveys such as [6,12,15,17], reviewed
many methods for enhancing and restoring underwater images, but focused only on the techniques
used, their limitations, quality assessment measures, and future directions. More recent surveys
have been published such as those by [18–20]; these concentrate only on the methods used for
underwater enhancement while ignoring restoration. Finally, the survey presented by [21] lacks a
complete discussion of existing enhancement methods besides quality evaluation metrics. Although
these reviews have been produced, they do not comprehensively discuss several issues. They
present incomplete classifications of enhancement and restoration techniques and ignore the latest
developments with deep learning techniques. They also lack a clear discussion and investigation
about how to increase the images quality. Therefore, this survey intends to review the most
prominent approaches for underwater image restoration and enhancement techniques and overcome
the previously listed limitations.

The following are the basic contributions of this survey:

• The basic concepts related to the underwater environment, including image formation and light
degradation models, are explained.

• Recent underwater image enhancement and restoration methods are comprehensively discussed
to identify their working methodologies, strengths, and limitations.

• The datasets applied for improving underwater image analysis and the existing evaluation
metrics are discussed and compared.

• Different enhancement and restoration techniques are experimentally evaluated by using images
from underwater images datasets.

• The main limitations that researchers face in underwater image analysis are summarized. These
limitations are classified into two categories: those related to the underwater environment and
those related to the underwater images.

• Several open issues for underwater image enhancement and restoration are presented to highlight
potential future research directions.

The remainder of this survey is organized as follows. Section 2 indicates the methodology
implemented in this study, such as the keywords used for the searches, data sources, and criteria for
selecting, including, and excluding articles. Section 3 presents the background of imaging in subaquatic
environments, identifying the image formation model and types of light degradation. Section 4
introduces the classification of the underwater image processing methods into two main categories
(enhancement and restoration) and presents a review of important previous studies. Section 5 presents
the techniques used for underwater image analysis. Section 6 highlights the limitations faced by
researchers in this field. Section 7 provides a comparison of the existing underwater imaging datasets.
Section 8 presents the metrics used for evaluating the quality of underwater imaging techniques.
Section 9 details performance evaluation for the qualitative, quantitative, and computational time
assessment. Section 10 presents a discussion on several applications in the field of underwater
image enhancement and restoration. Section 11 elaborates on future research directions. Finally, the
conclusion is presented. Figure 2 shows the survey structure and Table 1 provides all the abbreviations
used in this survey.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2023                   doi:10.20944/preprints202307.0585.v1

https://doi.org/10.20944/preprints202307.0585.v1


4 of 54

Table 1. Used abbreviations.

Abbreviation Definition Abbreviation Definition

AD Average Difference AG Average Gradient

AHE
Adaptive Histogram

Equalization
AMBE

Absolute Mean Brightness
Error

AUVs
Autonomous Underwater

Vehicles
BBHE

Brightness Preserving
Bi-Histogram Equalization

CCF
Colourfulness Contrast

Fog density index
CEF Colour Enhancement Factor

CRBICMRD
Color Restoration depended on

the Integrated Color Model
with Rayleigh Distribution

CLAHE
Contrast Limited Adaptive

Histogram Equalization

CNN Convolutional Neural
Network

CNR Contrast to Noise Ratio

DCP Dark Channel Prior DCT Discrete Cosine Transform
DOP Degrees of Polarization DL Deep Learning

DSNMF
Deep Sparse Non-negative

Matrix Factorization
DWT Discrete Wavelet Transform

EAs Evolutionary Algorithms EME Measure of Enhancement

EMEE
Measure of Enhancement by

Entropy
EUVP

Enhancement of Underwater
Visual Perception

FR Full Reference GANs
Generative Adversarial

Networks
GUM Generalized Unsharp Masking HE Histogram Equalization
HIS Hue-Saturation-Intensity HR High Resolution
HSV Hue-Saturation Value HVS Human Visual System
IEM Image Enhancement Metric ICM Integrated Color Model

IFM Image Formation Model JTF
Joint Trigonometric

Filtering

LFR Light Field Rendering MARI
Marine Autonomous

Robotics for Interventions

MAI
Maximum Attenuation

Identification
MCM Multi-Color Model

MD Maximum Difference MILP
Minimum Information

Loss Principal
MIP Maximum Intensity Prior MLP Multilayer Perceptron

MSRCR
Multiscale Retinox with

Color Restoration
MSE Mean Square Error

MTF Modulation Transfer Function NAE Normalized Absolute Error

NCC Normalized Cross-Correlation NIQA
Natural Image

Quality Assessment

NR No Reference NR-IQA
No-referenced Image

Quality Metric

PCQI
Patch based Contrast

Quality Index
PDI

Polarization Differential
Imaging

PSF Point Spread Function PSNR Peak-Signal-to-Noise Ratio

PSO Particle Swarm Optimization RAHIM
Recursive Adaptive

Histogram Modification
RCP Red Channel Prior RGB Red-Green-Blue

RGHS
Relative Global

Histogram Stretching
RIP Range Intensity Profile

RMSE Root Mean Square Error RNN Recurrent Neural Networks
ROVs Remotely Operated Vehicles RR Reduced Reference

RUIE
Real-World Underwater

Image Enhancement
SAUV Sampling System-AUV
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Table 1. Cont.

Abbreviation Definition Abbreviation Definition

SCM Single Color Model SNR Signal-to-Noise Ratio

SR Super-Resolution SSIM
Structure Similarity

Index Measure
SSEQI

Spatial Spectral Entropy based
Quality index

SVM Support Vector Machine

TM Transmission Map UCIQE
Underwater Colour Image Quality

Evaluation metric

UDCP
Underwater Dark

Channel Prior
UHTS

underwater task-oriented
test suite

UIEB
Underwater Image

Enhancement Benchmark
UIE

Underwater Image
Enhancement

UIQS
Underwater Image

Quality Set
UIEB

Underwater Image
Enhancement Benchmark

UIQM
Underwater Image Quality Measure

UISM
Underwater Image Sharpness

Measurement

UICM
Underwater Image
Color Measurement

ULAP
Underwater Light
Attenuation Prior

UIConM
Underwater Image

Contrast Measurement
UOI Underwater Optical Imaging

UUVs Unmanned Underwater
Vehicles

WCID
Wavelength Compensation

and Image Defogging

Figure 2. Survey’s structure.

2. Research Methodology

This section describes the protocols used to examine different methods and techniques proposed
for solving underwater image analysis problems during 2006–2022. The search keywords, data sources,
inclusion/exclusion criteria, and article selection criteria are discussed. Table 2 presents the frequency
of using the techniques proposed for underwater image analysis classified into three different classes.
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Table 2. Technique type: Analysis based on frequency.

No. Method type Method frequency %
1 Hardware-based Methods 10%
2 Underwater Image Restoration 30%
3 Underwater Image enhancement 60%

2.1. Search keywords

The keywords were carefully selected for the initial search. Then, many new words found in
numerous related articles were used to compile a keyword selection. The main keywords used in many
studies include underwater image analysis, underwater image enhancement, underwater image

restoration, underwater datasets, and underwater image quality evaluation. Our understanding of
the topic facilitated the selection of other keywords, such as color enhancement, light correction

method, color correction, dark channel prior, deep learning, image dehazing, scattering, and
absorption.

2.2. Data sources

Our survey included searching various academic databases to collect the articles, as indicated in
Table 3.

Table 3. Academic databases selected for research in this survey.

Academic database name Link

Science direct http://www.sciencedirect.com/
Web of science https://apps.webofknowledge.com/

PubMed https://pubmed.ncbi.nlm.nih.gov/
IEEEXplore https://ieeexplore.ieee.org/
Springerlink https://link.springer.com/

PeerJ https://peerj.com/
Scopus https://www.scopus.com/

2.3. Article Inclusion/Exclusion Criteria

Based on our research goal, the inclusion/exclusion criteria were chosen to determine which
publications were suitable for the next review stage. Research relevance was assumed for articles
that meet the inclusion criteria and excluded articles that do not fulfill the inclusion criteria. The
inclusion/exclusion criteria set is presented in Table 4.

Table 4. Article inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

• Our survey only concentrates
on articles on underwater
image analysis and processing
techniques.

• Only articles concerned
with processing underwater
images.

• Only articles and research
in English were taken into
account.

• Articles not on underwater
image analysis and processing
techniques are excluded.

• Articles not focused on any
other types of imaging but
only underwater imaging.

• Articles that were not written
in English were excluded.
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2.4. Article Selection

Inclusion and exclusion criteria were created to choose which articles were suitable for the review
phase. The articles under inclusion criteria articles were considered to be related to the research, and
those not meeting the inclusion criteria were excluded. The list of inclusion/exclusion criteria has
been discussed in the previous section. Choosing an article for this research was a three-phase process.
The first phase extracted only the titles, abstracts, and keywords of the articles. The second phase
discussed the abstract, introduction, and conclusion to modify the choices from the first phase. In the
final phase, the articles were perused, and thereafter, the article’s quality was evaluated according to
its research relevance.

3. Basic Concepts

Life is believed to have originated in the oceans, and at present, the underwater environment is
the natural habitat for most living organisms. In the accessible areas of the underwater environment,
various human activities are conducted. The underwater environment is explored using underwater
images that have been analyzed by applying computer vision and image processing techniques. When
analyzing underwater images in computer vision, a critical and fundamental difference between
images taken in water and air must be considered.

First, the light rays are attenuated and scattered as they travel through the water body. The
former leads to a loss of photons while the latter leads to a gain of photons [22]. Both effects are
wavelength dependent and therefore affect image coloration by producing bluish/greenish tints in
underwater images. Second, light rays are refracted at the water-air interface of the camera housing,
generating geometric distortions in the image. Therefore, as introduced in the following subsection, it
is essential to discuss the characteristics of the [23] underwater image model to improve underwater
image analysis.

3.1. Scattering

Underwater light scattering occurs when dust particles are present. When the refracted light from
the object outside reaches the camera, it combines with the floating particles in the imaging medium,
causing a scattering effect. Two forms of scattering affect underwater images; forward and backward
scattering [12,24,25]. When light reflected from an object is scattered on its way to the camera, it is
termed forward scattering. In contrast, backscattering happens when reflected light reaches the camera
immediately before reaching the lighted scene. Forward scattering results in blurred images, while
backscattering causes effects such as low contrast and hazy in the image [24].

3.2. Underwater Image Model

Jaffe-McGlamery is an imaging model for underwater image enhancement that depends on
physical models [13,26]. This model was developed as a simulator for designing underwater
image systems and evaluating the use of computer vision algorithms. Therefore, the model was
adopted to incorporate several factors, such as light sources, color, and shadows. It is also based on
realistically modeling the water medium and linear superposition. When the irradiance enters the
camera, it contains a linear combination of three different contents: the direct component ED, the
forward-scattered component EF, and the backscattered component EB. Hence, the total irradiance ET

is computed by:

ET(Total) = ED(direct) + EF( f owardScatter)+

EB(backScatter)
(1)

where ED(direct) is the light reflected by the object and reaches the camera without being scattered,
EF( f owardScatter) is forward scattering, and EB(backScatter) is backscattering. This model is widely
applied for image restoration and requires complex computations and a longer execution time [27,28].
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If the distance between the used camera and the underwater scene is very small, forward scattering
can be eliminated, and only the background scattering and direct transmission are considered [29–33].

The simplified Image Formation Model (IFM) is a typical and effective model for restoring
underwater images. It is computed by Equation 2.

Ic(x) = Jc(x)tc(x) + Bc(1 − tc(x)) (2)

where I is the camera, J is the underwater scene, t is the residual energy ratio, x is a particular
point(i, j) on the image scene , c is a channel from RGB channels, Jc(x)tc(x) is the direct transmission,
and Bc(1 − tc(x)) is the background scattering.

3.3. Underwater Light Degradation

The empirical Lambert-Beer law states that "The Decline in light intensity is based on the
properties of the medium through which the light travels" [13]. As per this law, the intensity of
light to create underwater images decays exponentially when traveling through water. This intensity
loss is called attenuation. The absorption effects make the light to lose energy, while scattering causes
a change in the electromagnetic energy direction. The absorption and scattering phenomenon leads to
light attenuation [34].

Light attenuation is a major concern when dealing with underwater imaging as it causes the
hazy effect that makes image processing applications difficult. It limits visibility to about 20m in clear
water and 5m in murky water [33]. The light absorption in water changes by wavelength. As shown
in Figure 3, the colors in the visible spectrum disappear as the water depth increases. Red light is
absorbed first because of its longer wavelength. Due to its shorter wavelength, blue penetrates the
deepest, leaving a bluish hue in underwater images [6,13].

Figure 3. Underwater color reduction.

4. Classification of Underwater Image Processing Techniques

Due to the increasing demand for clear good-quality images for understanding and analyzing the
real-life underwater environment, many studies have discussed the analysis of underwater images.
As mentioned, underwater image processing is classified into two main classes: image restoration
and enhancement. The main difference between these classes is that image restoration is based on the
original IFM, but image enhancement is not.

In this section, The current studies related to underwater image processing are presented. These
are classified into three main classes, image restoration, enhancement, and a fusion of both. Then, each
class is divided into its corresponding sub-classes as shown in Figure 4.
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Figure 4. Taxonomy of underwater image analysis techniques.

4.1. Underwater Image Restoration Techniques

The underwater image restoration method depends on physical models. It builds the physical
model by understanding the physical image degradation mechanism and the core physics of light
propagation. Then, it deduces the basic physical model parameters using prior knowledge and finally
restores the restored image [35]. The simplified IFM is identified by Equation 2, which is a typical
and effective underwater image restoration model. Underwater image restoration is classified into
two groups: hardware-based restoration and software-based restoration. Hardware-based restoration
is subdivided into three groups: polarization characteristic-based, stereo imaging, and range-gated
imaging. Whereas software-based restoration is subdivided into three groups: optical image-based,
prior knowledge-based, and deep learning-based restoration techniques. Table 5 presents a comparison
of these underwater image restoration methods.

Table 5. Summary of underwater image restoration methods.

Reference Method Based Advantages Disadvantages

Huang et al.
(2016)

Polarization
Effective in the cases of
both scattered light and

object radiance
High computational complexity

Hu et al.
(2017)

Polarization
Enhanced visibility and low
computational complexity

Didn’t effectively remove noise
and no application for

color images
Han et al.

(2017)
Polarization

Suppressed backscattering
and extracted edges

No experiments were applied
in real-life conditions

Hu et al.
(2018)

Polarization
Enhanced the underwater images

even in turbid media
Complex computational time

Hu et al.
(2018)

Polarization
Intensity and DCP of

backscattering were suppressed

Solving the A∞ and Pscat

spatial distribution was
very difficult

Ferreira et al.
(2019)

Polarization
Effective method for

underwater images recovery
Complicated the cost

function and time-consuming
Yang et al.

(2019)
Polarization

Enhanced the contrast
in underwater images

Noise wasn’t removed

Wang et al.
(2022)

Polarization
Qualitatively and quantitatively

improved the underwater images
and removed noise

High time complexity

Jin et al.
(2020)

Polarization
higher signal to

noise ratio and higher contrast
Noise wasn’t removed
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Table 5. Cont.

Reference Method Based Advantages Disadvantages

Fu et al.
(2020)

Polarization
Enhanced visibility in

underwater images
High computational complexity

Burno et al.
(2010)

Stereo Imaging Good quality underwater images High time complexity

Roser et al.
(2014)

Stereo Imaging improved stereo estimation
Didn’t work well in shallow water

due to various light conditions
Lin et al.

(2019)
Stereo Imaging

Enhanced the stereo imaging
system

High computational time

Luczynski et al.
(2019)

Stereo Imaging Effective method Noise wasn’t removed

Tan et al.
(2006)

Rang Gated Enhanced underwater images contrast Noise wasn’t removed

Li et al.
(2009)

Rang Gated
Reduced speckle noise and
preserved features details

High computational complexity

Liu et al.
(2018)

Rang Gated Enhanced image visibility Didn’t effectively remove noise

Wang et al.
(2020)

Rang Gated
Enhanced image contrast

and visibility
High computational complexity

Wang et al.
(2021)

Rang Gated
Enhanced image contrast and

worked well even if the estimated
depth was smaller

Complication of cost function

Trucco and
Olmos-Antillon

(2006)
Optical

Optimized the computed
parameters values automatically

Increased the time and
computation complexity

Hou et al.
(2007)

Optical
Effective method that depended

on point spread function

Importance of estimating
the parameters of illumination

scattering

Boffety et al.
(2012)

Optical
An effective smoothing

method was used
Low contrast in images

Wen et al.
(2013)

Optical
Enhanced the perception of

underwater images
Poor flexibility and

adaptability
Ahn et al.

(2018)
Optical Effective and accurate method Increased time complexity

Chao and
Wang (2010)

DCP
Recovered the underwater

images and
removed scattering

Underwater images suffered
from color distortion

Yang et al.
(2011)

DCP
Fast method for underwater

images restoration
Only suitable for underwater images

with rich colors.
Chiang and
Chen (2011)

DCP
Restored underwater images color

balance and removed haze
High computational

complexity
Serikawa and

Lu (2014)
DCP Improved the contrast and visibility High computational time

Peng et al.
(2015)

DCP
Exploited the blurriness of

underwater image
Noise wasn’t removed

Lu et al.
(2015)

UDCP
Color correction of underwater

images effectively
Decreased the contrast

Lu et al.
(2017)

UDCP
Effective method for recovering

the underwater images
Increased noise

Galdran et al.
(2015)

UDCP
Enhanced the artificial light

and contrast
Colors of some restored images

were unreal and incorrect
Carlevaris-Bianco

et al. (2010)
MIP

Reduced the haze effects and
provided color correction

Didn’t solve problems of
attenuation and scattering

Zhao et al.
(2015)

MIP
Removed haze effect
and corrected colours

Illumination wasn’t considered

Li et al.
(2016)

MIP
Increased brightness and

contrast of underwater images
Noise wasn’t removed

Peng and
Cosman (2017)

Other Prior
Worked well for various

underwater images
Noise wasn’t removed
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Table 5. Cont.

Reference Method Based Advantages Disadvantages

Peng et al.
(2018)

Other Prior
Restored degraded images

and increased contrast
High computational complexity

Li et al.
(2016)

Other Prior
Increased brightness

and contrast
Couldn’t remove noise effects

Wang et al.
(2017)

Other Prior
Enhanced contrast and

corrected colours
High time complexity

Song et al.
(2018)

Other Prior
improved quality of

underwater images and
Lowest running time

Noise wasn’t removed

Ding et al.
(2017)

DL Increased contrast Highest running time

Cao et al.
(2018)

DL Restored images effectively
Blurring and low visibility

of underwater images
Barbosa et al.

(2018)
DL

Increased the underwater
images quality

Noise wasn’t removed

Hou et al.
(2018)

DL
Increased contrast, and

restored natural appearance
Noise and some blurring

4.1.1. Hardware based Restoration

Monitoring and exploring the underwater environment requires many hardware devices. These
devices are also used to improve underwater images. The methods that hardware-based need hardware
components for underwater image restoration. This includes using lasers, sensors, polarizers, ROVs,
polaricams, and stereo imaging. Polarization processing has been used to reduce backscattering
precisely. The polarization process is executed by applying a polarized light source for taking pictures
or using polarization cameras. The laser-based methods have been used to eliminate backscattering
by using a camera that closes the flash gate at a particular moment. Waterproof sensors have been
applied for sensing marine snow, macroparticles, and swimming organisms to prevent reflections.
Aqua tripods are used for capturing underwater images more effectively, and these devices are placed
on the seafloor. Underwater image restoration, depending on hardware, can be classified into three
categories, namely, polarization characteristics, stereo imaging, and range gate imaging.

4.1.1.1 Polarization characteristic-based

Light polarization is the property of light waves that describes their direction of oscillation.
Polarization vibrates light in only one direction [29,36–38]. In air, reflected light is partially polarized,
while in water, the light is visible in most directions. Therefore, it is much weaker, and this scattering
along multiple paths degrades the polarization through meters. Because of the advantages of avoiding
the scattering and absorption of light, polarization imaging has become a more significant underwater
image restoration technique. [39] presented a technique that depended on the effect of polarization on
objects. This method recovered the objects’ radiance based on the target signal’s estimated polarization
and enhanced the underwater image quality in cases where backscatter and object radiance was found.
It has been used in many applications, such as artifact objects.

Hu et al. [40] solved underwater vision problems such as signal attenuation and backscatter
veiling. They developed an underwater image recovery method that depended on transmittance
correction. It transformed the transmittance of low depolarization objects from negative to positive
values, optimizing underwater images’ quality with the simple polynomial fitting algorithm. This
method was very effective for underwater images with a high or low degree of depolarization. Han et
al. [41] enhanced low-resolution and low-contrast underwater images resulting from light attenuation
and scattering in water. They depended on the PSFs that were estimated using a slant-edge method.
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Subsequently, the modulation transfer function (MTF) was proposed for evaluating resolution variation
with spatial frequencies. This method reduced the effect of underwater image scattering.

Hu et al. [42] proposed a method for polarimetric image restoration in turbid media using the
circular polarization arising from illumination. The restored underwater images contain linear and
circular polarization information. This method produced more effective experimental results than
the previous methods. The results of this method confirmed that it enhanced the quality of recovered
underwater images recorded in turbid water.

Hu et al. [43] developed a restoration method that estimated the polarization degree and the
backscatter intensity at different positions in the underwater images. This method considered the
field of non-uniform optics in underwater image retrieval. Recovering the radiance of objects uses
an estimation of backscatter intensity at different image positions and degrees of polarization (DOP)
and was highly effective in enhancing underwater images. Sanchez et al. [44] developed a method
for restoring underwater images through the estimation of model parameters using the bioinspired
optimization metaheuristic with a cost function: a no-referenced image quality metric (NR-IQA). This
method could restore the underwater images, but with a complicated cost function.

Yang et al.[45] developed an underwater image restoration method that relied on polarimetric
images using active non-polarized illumination. The non-polarized illumination indicated that the
polarization effect could be discounted, and it did not matter whether the degree of polarization was
low or high. This method improved the visibility and image contrast. Wang et al. [46] presented a new
technology for restoring underwater images that depended on the periodic integration of polarization
images. It replaced one or two pairs of orthogonal polarization images by integrating a series of
polarization images into the polarization differential imaging (PDI) system. This method captured
images at different positions during a complete cycle of image intensity. Then, these images were
combined, and the result was calculated based on integrating the polarized light’s intensity. Finally,
the polarization degree at each pixel was computed, and a clear image was restored.

Jin et al. [47] developed a new method for removing polarization scattering based on automatically
executing polarimetric calculations of the target light at each pixel, which helped restore the underwater
image. The polarization degree of the target light in this method was constant. This method was
very effective in retrieving underwater images and enhanced the visibility and contrast in underwater
images. Fu et al.[48] proposed a new underwater image restoration method consisting of scattering and
absorption compensation. It depended on the wavelength and depth of the scene in the underwater
signals. In the scattering method, an automatic map was used to estimate the backlight without
considering the existence or not of any object. In absorption, a new compensation strategy was
introduced in color restoration.

4.1.1.2 Stereo imaging

The stereo imaging method simulates the human visual system. This method uses traditional
cameras to take pictures of the same target from various views and perspectives and then computes
the depth of the field from these stereo images. Due to the emergence of the charged-coupled device
(CCD), this method consists of a binocular vision device that obtains the depth information. Higher
resolutions and refresh rates along with lower costs make this method of stereo imaging more popular
in AUV systems.

Bruno et al. [49] proposed a structured illumination and light in the stereo imaging method
with various conditions of water turbidity. This method applied 3D underwater reconstructions
that depended on the combination of stereo-photogrammetry and structured light. The patterns of
structured light were projected using a video projector and acquired by the stereo-vision system. This
method achieved effective results even if in turbid conditions.

Roser et al. [50] developed a method for improving stereo perception in AUV systems. This
method was applied for enhancing and restoring underwater images to improve the stereo range
resolution using natural, dynamic lighting under turbid conditions. This method used a model for
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underwater light attenuation to estimate the visibility parameters. First, contrast enhancement was
performed by employing visibility estimation and computing disparate densities. Second, the light
attenuation model was used for ocean water to obtain color enhanced images.

Lin et al. [51] proposed an image restoration method for AUVs that depended on an
object-recognition and stereo-imaging system. The Hough transform used with the optical flow
method for linear features and movement speeds in dynamic underwater imaging and used the Harris
corner detector for target distance estimation. The AUV had a binocular camera with wide-angle
lenses. This method was highly effective and produced accurate results.

Luczynski et al. [52] proposed a method for improving stereo imaging hardware for deep sea
operations. The method had the computation power for processing onboard stereo vision and also for
tasks of computer vision such as inspection, object recognition, mapping, navigation, and intervention.
They formalized a method for stereo component selection that included optimizing and validating the
pressure in cameras using the finite element method (FEM).

4.1.1.3 Range gated imaging

The system of range-gated imaging includes a fast camera that uses a CCD image sensor, a timing
control unit (TCU), and a pulsed laser. It controls the gate of camera that intakes the reflected light
directly and prevents backscattering from reaching the sensor. The camera gate’s switching intervals
depend on prior information, manual settings, various sensors, and a laser range finder. This gate is
opened for a short time until the pulses return after hitting an object and then immediately close.

For an ROV, tan et al. [53] presented a hardware optimization method for range-gated imaging
in highly turbid conditions. They advanced hardware for a range-gated imaging system and the
optimization stages of tailgating and preprocessing techniques. The tail gating system was applied
by a camera delay to the tail of the reflected image temporal profile (RITP) and this was followed by
contrast limited adaptive histogram equalization (CLAHE) for image enhancement.

Li et al. [54] used a range-gated system for restoring underwater image visibility and quality in
turbid conditions. It utilized time discrimination for enhancing the ratio of signal-to-backscattering
noise by rejecting the backscattered light in the medium. It consisted of a synchronous and control
system, a pulsed laser system, and a camera with a high-speed gate. This method efficiently reduced
speckle noise in the underwater images and preserved the details of features.

Liu et al. [55] proposed a system for constructing the scattering model and developed an optimal
pulse through coordinated gate control. This method used a 532 nm narrow-pulse laser with a self-built
gain CCD system to form the range-gated imaging system. This method was verified by simulation
and computing the relative ratio for the images that were acquired through the laser distance gating
system.

Wang et al. [56] developed a 3D dehazing range-gated system for removing the scattering. This
method greatly advanced underwater target navigation, detection, and marine scientific research
because of the excellent suppression of backscatter. This method depends on the characteristics of how
light propagates in water. The reference image and coefficient of water attenuation were needed for
computing the depth-noise maps (DNMs). The experiments on this method were conducted under
various water conditions.

Wang et al. [57] proposed a method to decrease the input images number and restore their clarity.
This method was used for dehazing underwater images using only a single-gated underwater image.
It depended on the prior that target intensity distributes due to the range intensity profile (RIP) in RGI.
The depth noise map and depth transmission were computed from the scene depth. Finally, the high
quality of the images was restored and enhanced.
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4.1.2. Software based Restoration

Software-based restoration is a non-physical restoration approach that aims to create the imaging
model and compute the parameters used in this imaging model. These methods use restoration
software algorithms to recover underwater images. Underwater image restoration depended on
software can be classified into three groups, namely, optical imaging, prior knowledge, and deep
learning methods. Compared to hardware-based methods, those based on software- have many
advantages such as lower computational time, easy modulation, better design, and reduced costs.

4.1.2.1 Optical

The Underwater Optical Imaging (UOI) model can obtain natural and clear underwater images
by establishing a rough optical imaging model and reversing the degradation process [58]. This model
is defined by Equation 2. There are many underwater optical imaging applications, such as detectors
for onboard underwater optics, aerial, ocean-surface, and underwater optical cameras [59].

Trucco et al. [60] developed a method for self-tuning image restoration that depends on the
Jaffe-McGlamery UOI model [58,61]. The optimal filter parameters are automatically computed for
each underwater image by optimizing the quality depended on the global contrast measure. The
simplified physical model is suitable for diffused light with poor backscatter and various imaging
conditions. This technique depends on the basic assumptions that the underwater images were affected
both by forward scatter and homogeneous illumination.

Hou et al. [62] presented a framework for underwater image restoration that depended on the
UOI model. They assumed that the blurring in underwater images resulted from the scattering by
suspended particles and organisms. The restoration was done by considering underwater image
proprieties from different domains (i.e., spatial and frequency). From the spatial domain, they used the
point spread function (PSF) and modulation transfer function (MTF) from the frequency domain. This
method restored underwater images using deconvolution depended on estimating the light scattering
parameters.

Boffety et al. [63] developed a valuable simulation tool for color restoration that depended on
underwater optical images. This method is based on studying the spectral discretization influence of
the model parameters on color rendering. They demonstrated that if just RGB data from the simulation
scene is available, the reconstruction step improves the image color.

Wen et al. [64] presented an underwater optical technique for describing underwater image
formation that depends on the physical process. Then, after using this model, an enhancement
algorithm was applied to enhance the images. The new underwater dark channel prior was proposed
to compute the scattering rate and the backlight in the UOI. The results showed that this method was
efficient at restoring underwater images. As part of the sampling missions, ahn et al. [65] presented an
image transmission system as a sampling system-AUV (SAUV) and demonstrated its effectiveness
on the high seas. This method applied underwater optical imaging for autonomous vehicles and
increased underwater detection accuracy.

4.1.2.2 Prior knowledge-based Image Restoration

Light absorption, suspended particles, and scattering are the reasons for underwater image
degradation. Many restoration methods depend on prior knowledge applied for underwater image
restoration, such as the dark channel prior (DCP) [66,67], underwater dark channel prior (UDCP) [68,
69], maximum intensity prior (MIP) [70], red channel prior (RCP) [71], and underwater light attenuation
prior (ULAP) [72]. The following subsections discuss the various types of these prior-based methods
applied for underwater image restoration.

1. Dark Channel Prior (DCP) Method
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[66] presented the DCP method that is used for dehazing the images. Haze is a normal
phenomenon that reduces visibility, obscures scenes, and changes colors. It is a problem for
photographers as it causes the degradation of image quality. It threatens the reliability of many
applications, such as object detection, outdoor surveillance, and aerial imagery. Therefore,
removing the haze from images is crucial in computer graphics/vision. The DCP-based dehazing
technique is used for enhancing underwater images. This method depends on the observation
that good quality and clear underwater images have some pixels at very low intensities in at
least one color channel.

For restoring clear underwater images, chao et al. [31] proposed an effective DCP-based method,
which was used to reduce the effects of water scattering and attenuation in underwater images.
DCP was used to compute the turbid water depth by assuming that multiple patches in water-free
underwater images consist of a few pixels with very low intensities in at least one color channel.
yang et al. [73] developed a low-complexity and efficient DCP-based method for restoration
of underwater image. They calculated the depth maps of images by employing a media filter
instead of soft matting. Color correction was also used to improve the contrast in the underwater
image. This method was highly effective images restoration and reduced the execution time.

Chiang et al. [33] presented a method for enhancing underwater images by applying Wavelength
Compensation and Image Defogging (WCID). They used the dehazing algorithm to reduce
for the attenuation discrepancy across the propagation path and to remove the possible light
source influence presence. This method performed well in enhancing the underwater images
objectively and subjectively. Serikawa et al. [74] proposed a new method that compensates for the
attenuation discrepancy across the propagation path and used a fast dehazing algorithm named
joint trigonometric filtering (JTF). JTF improves the transmission map (TM), which, estimated by
the DCP affords many improvements, such as scatter reduction, edge information, and image
contrast. This algorithm is characterized by noise reduction, better exposure to dark regions, and
improved contrast.

Peng et al. [75] developed a method for computing depth maps for underwater image restoration.
It depended on the observation that an object that was further from the camera was more blurred.
They combined image blurriness with the image formation model (IFM) to compute the distance
between the scene points and the camera. It was much more effective than any other IFM-based
enhancement method. The DCP is affected by selective light attenuation in the underwater
environment, so various underwater enhancement methods based on DCP were developed and
used.

2. Underwater Dark Channel Prior (UDCP) Method

The underwater image red channel will dominate the dark channel because red light attenuates
more rapidly than blue and green light as it travels through the water. To avoid the red influence,
[68] introduced the UDCP, which evaluates only the green and blue (GB) channels to determine
the underwater DCP. [76] proposed a new technique that compensates for the attenuation
discrepancy in underwater images through the propagation path. They developed color lines
depended on an ambient light estimator and adaptive filtering in shallow oceans for underwater
image enhancement. They also presented a color correction algorithm for color restoration.

Lu et al. [12] proposed a new technique for super-resolution (SR) and scattering in underwater
images. First, based on self-similarity, a high resolution (HR) of the scattered and the de-scattered
image is obtained through the SR algorithm. Then, the convex fusion rule is used for retrieving
the HR image. This algorithm is highly effective in restoring underwater images. Galdran et al.
[71] developed a new, automatic method for the restoring of underwater images that depends
on RCP. This RCP extracts the dark channel in which the blue and red channels are reserved.
Their experimental results indicate that this method effectively enhances degraded underwater
images.
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3. Maximum Intensity Prior (MIP) Method

Suspended particles that cause turbidity or fogging degrade the underwater images quality. The
difference in attenuation between the underwater images’ red (R) and GB channels is significant.
Carlevaris et al. [70] developed an effective algorithm that removes light scattering, known as
dehazing, in underwater images. They presented a prior for estimating scene depth termed the
maximum intensity prior (MIP). The MIP is the difference value between the R channel intensity
and the maxima of the G and B channels. The closest point shift in the foreground represents the
most significant difference between the color channels.

Zhao et al. [77] developed a new method that derives the water’s optical properties. This
method estimated the background light (BL) that depended on the DCP and MIP. First, it took
the brightest 0.1% of the dark channel pixels and then chose the pixel that differed maximally in
the B-G or G-R channels. Li et al. [78] developed a new method for restoring underwater images
that determines the selected background light using its maximally different pixels. This method
depends on dehazing the blue-green channels and correcting the red channel. First, by using
a blending strategy as Li et al. [79,80], a flat background region was selected in the quad-tree
subdivision. Then, 0.1% of the region candidate’s brightest pixels from the dark channel were
taken. Finally, a pixel with the greatest difference in the R-B channel was selected as the global
backlight.

4. Other Prior-based Method

In addition to those listed above, some priors are not commonly applied but are helpful in
underwater image restoration. For example, Peng et al. [81] developed a new technique for
computing the underwater scenes depth that depended on light absorption and image blurring.
This method was used in the IFM for image restoration and its experimental results were much
more accurate and effective than any other.

Peng et al. [82] developed a method for enhancing and restoring underwater images by reducing
light absorption, scattering, low contrast, and color distortion caused by light traveling through
a turbid medium. First, ambient light was computed by color change that depended on depth.
Then, the scene transmission was computed by the differences between the observed intensity
and the ambient light. In addition, adaptive color correction was calculated. Li et al. [79]
developed a method for enhancing and restoring underwater images that depends on the
minimum information loss principle (MILP). The dehazing algorithm was applied to recover
underwater images’ color, natural appearance, and visibility. An effective contrast enhancement
algorithm was applied to enhance underwater images’ contrast and brightness. It improved
visual quality, accuracy, and other valuable information.

Wang et al. [83] proposed the maximum attenuation identification (MAI) technique for deriving
the depth map and backlight from degraded underwater images. Region background estimation
was simultaneously applied to ensure optimal performance. Experiments were conducted on
three image types: calibration plate, natural underwater scene, and colormap board. Song et al.
[72] presented an accurate, effective, and rapid scene depth estimation model that depended on
ULAP. It assumed that the differences between the R intensity value and the G and B intensity
values in only one pixel of the underwater image were strongly related to depth changes in the
scene. In estimating the R-G-B channels, this model was applied for the BL and TMs.

4.1.2.3 Deep Learning

Restoring degraded and hazy underwater images is a challenge. Existing prior-based methods
have inferior and limited performance in many situations because of their hand-designed features.
Therefore, the tendency toward deep learning algorithms is critical. Due to the deep learning rapid
development in underwater image restoration, researchers have seen a major shift from complete
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parameter selection using artificial optimization models to automatic and effective training models.
They depend on instance data to extract valuable feature vectors using deep learning.

Ding et al. [84] developed a technology for solving the problem of underwater images that were
degraded due to light scattering and color casts. This method featured underwater enhancement
that included color correction and an image dehazing method that depended on the atmospheric
scattering model. First, the transmission map was derived from the color-corrected image. Then, a
convolutional neural network (CNN) was used to the image patches extracted from the color-corrected
image to predict the depth map of the scene. This method was exceptionally effective and accurate
and was used in many applications, such as underwater object detection and recognition. Cao et
al. [85] developed a method for restoring underwater images that depended on two neural network
techniques for estimating scene depth and backlight. This method solved problems such as color
distortion and low contrast resulting from light scattering and absorption. The method’s effectiveness
was confirmed by its experimental results.

Barbosa et al. [86] developed a CNN-based technique for underwater image enhancement
and restoration. This method did not require any ground truth data as it used image quality
metrics to support underwater image restoration. The results of these experiments showed a notable
improvement in the underwater images’ visual quality and preserved edges. Hou et al. [87] developed
a new framework for performing residual learning in the transmission and image domains. This
method consisted of a data-driven residual model for transmission estimation and residual formulation
based on the knowledge-driven illumination balance in the underwater environment. Qualitative and
quantitative analyses both confirmed the method’s effectiveness.

4.2. Underwater Image Enhancement Techniques (IFM-free)

Studies related to enhancing underwater images often use the techniques of enhancement
directly to the images [88,89]. These methods enhance the color and contrast of images depended on
pixel intensity redistribution and do not depend on the principles of underwater imaging. Further
enhancement methods are applied especially associated with the underwater image characteristics,
such as low contrast, and haze. These methods make changes for the pixel values in the spatial
or transformation domain. Deep learning methods, especially CNNs, have been applied for
underwater image enhancement that relies on hidden features that can be learned for quality
improvement. Underwater image enhancement is categorized into four groups: spatial domain-based
image enhancement, frequency domain-based image enhancement, color constancy-based image
enhancement, and deep learning-based image enhancement. Table 6 presents a comparison of
underwater image enhancement methods.

Table 6. The summary of the underwater image enhancement methods.

Reference Method Based Advantages Disadvantages

Ancuti et al.
(2012)

Spatial Domain
(SCM)

Increased contrast of underwater
images

Didn’t work well with
poor artificial light

Ancuti et al.
(2016)

Spatial Domain
(SCM)

High accuracy in underwater
images enhancement

Noise wasn’t removed

Liu et al.
(2017)

Spatial Domain
(SCM)

Enhanced underwater images
contrast and visibility

Low accuracy

Torres-M´

endez and
Dudek (2008)

Spatial Domain
(MCM)

Depended on learned
constraints for underwater

images enhancement

Some noise and blurring
in underwater images

Iqbal et al.
(2007)

Spatial Domain
(MCM)

Solved the problem of light
Low contrast in

underwater images
Ghani and
Isa (2017)

Spatial Domain
(MCM)

Enhanced underwater images
qualitatively and quantitatively

High time complexity
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Table 6. Cont.

Reference Method Based Advantages Disadvantages

Hitam et al.
(2013)

Spatial Domain
(MCM)

Highest PSNR values and
lowest MSE

Blurring in underwater images

Huang et al.
(2018)

Spatial Domain
(MCM)

Enhanced the visibility of
underwater images

Not suitable for all types
of underwater images

Petit et al.
(2009)

Frequency
Domain

Light attenuation was removed Low contrast and visibility

Cheng et al.
(2015)

Frequency
Domain

Better Contrast and
Higher visibility

Highest time running

Sun et al.
(2011)

Frequency
Domain

Removed the noise from
underwater images

Poor quality in low
light conditions

Ghani et al.
(2018)

Frequency
Domain

Highest contrast and visibility Highest run time

Priyadharsini
et al. (2018)

Frequency
Domain

Better PSNR and SSIM results Some Noise wasn’t removed

Joshi et al.
(2008)

Color
Constancy

Balance between machine
and human vision

Low color and
contrast distortion

Fu et al.
(2014)

Color
Constancy

Enhanced contrast, color,
and edges and details

High time complexity

Zhang et al.
(2017)

Color
Constancy

Enhanced edges and reduced
noise

Couldn’t enhance the
underwater images contrast

Wang et al.
(2018)

Color
Constancy

Increased image quality
and balanced color

Noise and high
time complexity

Zhang et al.
(2019)

Color
Constancy

Good denoising and
edge-preserving

Low contrast

Tang et al.
(2013)

Color
Constancy

Intensity channel was applied
in multi-scale Retinex

Filtering techniques were
in efficient

zhang et al.
(2021)

Color
Constancy

Increased contrast Noise wasn’t removed

Dixit et al.
(2016)

Contrast
Removed noise and

preserved details
Low efficiency and

highest time
Wang et al.

(2016)
Contrast

Increased contrast and
precision value

Didn’t remove noise

Bindhu and Maheswari
(2017)

Contrast Noise was reduced
High computational

complexity
Guraksin et al.

(2019)
Contrast

Visual information
is more important

Didn’t remove haze

Sankpal and Deshpande
(2019)

Contrast Increased images’ contrast
Entropy was still less than

other researches
Azmi et al.

(2019)
Contrast

Improved images details
and reduced color cast

Low efficiency and highest time

Wang et al.
(2017)

Deep Learning
Enhanced contrast and

color correction
Low efficiency and

highest time
Fabbri et al.

(2018)
Deep Learning Enhanced contrast

Noise and Light
not solved

Anwar et al. (2018) Deep Learning Enhanced contrast Didn’t remove haze values .
Li et al. (2018) Deep Learning Corrected color cast Low contrast

Li et al. (2019) Deep Learning Enhanced contrast
Effects of attenuation and
backscatter weren’t solved

Pritish et al. (2019) Deep Learning
Enhanced contrast and visibility

of underwater images
Noise wasn’t removed

Li et al. (2020) Deep Learning Enhanced brightness and visibility
Low contrast and

noise wasn’t removed

Hu et al. (2021) Deep Learning
Enhanced contrast of
underwater images

Clarity of the image was far
lower than that of

the truth image
Tanget al. (2023) Deep Learning Enhanced contrast The network was more weaker

4.2.1. Spatial Domain-based Image Enhancement

The spatial domain process depends on the intensity histogram, which expands the gray levels
depended on the grayscale mapping theory [90]. Due to the nature of underwater images, histograms
indicate a more concentrated and important pixel-value distribution than is found in natural images.
The dynamic range expansion of the underwater image histogram improves the visibility, detailed
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information, and contrast of images. The spatial domain completes the intensity histogram in various
standard color models, e.g., red-green-blue (RGB), hue-saturation-intensity (HSI), hue-saturation-value
(HSV), and CIE-Lab. The spatial domain approach has significantly advanced in the area of image
enhancement [91,92]. The spatial domain is divided into two subgroups: The Single-Color Model
(SCM) and the Multi-Color model (MCM), as introduced in the following paragraphs.

1. Single Color Model (SCM) Method

Ancuti et al. [93] presented a fusion-based method for underwater image enhancement. First,
the two fused images were created from the input image. The first image was corrected by
white balancing, and the contrast was improved for the second image using adaptive histogram
equalization. Thereafter, the four fusion weights were defined relative to the salient features,
contrast, and two fused image exposure. Finally, the two fused images and weights were
combined to obtain the enhanced images. Ancuti et al. [34] proposed a method for color balance
and the enhancement of underwater images. This method used a single image and did not need
specified hardware, knowledge, or information about scene structure or underwater conditions.
It relied on the fusion of two images derived from a white-balanced, color-compensated image of
the original degraded and hazed image. This method improved the underwater images’ contrast,
edge sharpness, and visibility.

Liu et al. [94] developed an effective and accurate underwater image enhancement method. This
method is known as Deep Sparse Non-negative Matrix Factorization (DSNMF) for estimating the
underwater image illumination. First, the images were divided into small blocks. Each channel
of this small block was an [R, G, B] matrix, then each depth of the matrix was divided into several
layers using the DSNMF sparsity constraint. The last layer of this factoring matrix was applied
as illumination, and the image was enhanced with sparse constraints.

2. Multiple Color Model (MCM) Method

Torres et al. [95] depended on the Markov random field (MRF) to represent the relations between
underwater images before and after distortion and used maximum a posterior (MAP) estimation
for enhancing the colors in underwater images. While computing the dissimilarity between image
patches, the underwater images were transformed to the CIE-Lab color space to represent equally
perceived differences. This method’s experimental results indicated its efficacy and feasibility.
Iqbal et al. [96] developed a new and effective method for underwater image enhancement
depended on the integrated color model (ICM). This method solved the problems of image
degradation through light scattering and absorption. First, it applied the RGB contrast stretching
algorithm for color contrast equalization. Second, HSI saturation and intensity stretch were
applied to increase the true color and improve the brightness and saturation in the degraded
underwater images.

Ghani et al. [97] developed a technique for underwater image enhancement that depended
on recursive adaptive histogram modification (RAHIM). This technique tended to enhance
underwater images’ backgrounds to increase the contrast. They modified the brightness and
the underwater image saturation in the HSV color model using the human visual system and
the Rayleigh distribution. Then, the enhanced underwater image was converted to the RGB
color model. Hitam et al. [98] developed a technique for enhancing underwater images that
depended on contrast limited adaptive histogram equalization (CLAHE) and built the CLAHE
mix to enhance the visibility of the underwater image. CLAHE was used for the RGB color model
and the HSV color model for two underwater images. Thereafter, these images were merged
using the Euclidean norm. This method enhanced the image contrast and reduced noise.

Huang et al. [99] presented a method for underwater image enhancement that depended on
relative global histogram stretching (RGHS) in two color models, RGB and CIE-Lab. First, the
underwater images were preprocessed using gray world adaptive histogram stretching in the
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RGB color model with the help of RGB channels and selectively attenuated light propagation in
the underwater images. Thereafter, the CIE-Lab color model, applied the brightness L and color
a, b components for curve and linear adaptive stretching optimization.

4.2.2. Frequency Domain-based Image Enhancement

The frequency domain technique processes images using spatial, or convolution transform
to enhance these images [100]. There are two components in the frequency domain: the high
frequency, which represents the edge region where pixel values show significant changes; the
low frequency represents the flat region in the image [101]. The frequency domain improves the
underwater image quality through high-frequency amplification and by suppressing the low-frequency
component [102]. The problem of Degraded underwater images is that the difference between the low-
and high-frequency components is minimal [103]. Therefore, many techniques, such as homomorphic
filtering [104], transformation domain methods [105], wavelet transform, and high-boost filtering are
used to improve underwater images.

Petit et al. [106] presented an effective method that depended on quaternions to improve
object contrast and color reproduction. This method requires the preprocessing of color space
contraction and inversion light attenuation. A low-pass filter was used to remove noise through the
high-frequency suppressor component, and a high-pass filter was used to preserve details by reducing
the low-frequency components. The results of this method were very accurate and effective. Cheng et
al. [107] developed a method for underwater image enhancement that designed the Jaffe-McGlamery
optical model and proposed an accurate and effective algorithm for underwater image recovery. This
algorithm used a prior dark red channel to compute the transmission and background light. They
developed a simple low-pass filter to blurred and degraded underwater images by analyzing the
physical property of the point scattering function. The experimental results confirmed that this method
was highly effective.

Feifei et al. [108] presented a method for underwater image enhancement that depends on wavelet
decomposition and a high-pass filter. This highly effective and accurate method was developed to
reduce noise in underwater images and solved the wavelet shortcoming when processing backscatter
noise. Ghani et al. [109] presented a technique to increase the visibility in deep underwater images that
depended on homomorphic filtering, recursive superimposed CLAHE, and dual-image wavelet fusion.
Homomorphic filtering was used to provide whole image illumination. The recursive overlapping
CLAHE algorithm was used to stretch and separate overlapping blocks and adjacent overlapping
blocks of the image channel. After that, these two images were fused using wavelet transform.

Priyadhars et al. [110] developed a method for underwater image enhancement to solve the
imperfections in these images, such as low contrast and visibility. These problems caused objects
in underwater images to be obscure. This method used the stationary wavelet transform (SWT) to
divide the input image into four components; high-high, high-low, low-high, and low-low. The results
showed that it was highly effective and increased contrast.

4.2.3. Color Constancy-based Image Enhancement

The human visual system is based on color constancy and ensures that colored objects are
perceived predictably under various lighting conditions. Color constancy consists of white balancing
and Retinex. White balancing is applied to ensure that the color of objects under various conditions
of lighting is recorded accurately. Retinex is a precise and automatic application that relies on color
constancy theory and enables humans to explore the world under various lighting conditions.

Joshi et al. [111] proposed a method to resolve imprecise coloration and low contrast in underwater
images resulting from degradation. Retinex was used to achieve a balance between human and
machine vision by applying color constancy. This method includes color rendering, dynamic range
compression, and color constancy theory to produce highly effective and accurate results. Fu et al.
[112] developed a technique for enhancing underwater images to address problems, as visual fuzz,
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insufficient illumination, and color distortion. This method was based on retinex, which was used to
improve a single underwater image. First, color correction was used to resolve color distortion. After
that, retinex was used to analyze illumination and reflectance. Finally, illumination and reflectance we
enhanced to eliminate fuzz and underexposure problems.

Zhang et al. [113] developed a technique for underwater image enhancement to solve image
problems, such as blurring, low contrast, and low visibility. This method depended on the Retinex
framework that simulated the human visual system. Retinex is a portmanteau of "Retina" and "Cortex"
and its function depends on a combination of trilateral and bilateral filters. This method effectively
solved the degradation problem under various turbidity conditions. Yong et al. [114] developed a new
and effective method for enhancing underwater images by converting them from the RGB color space
to HSV. Then, Retinex was used to divide the v channel into a detail layer and a lighting layer that
relied on various methods for image enhancement. Finally, the improved V, H, and S channels were
converted to an RGB color model to improve and enhance images.

Zhang et al. [115] developed an underwater image enhancement technique to solve image
degradation problems. They relied on a multiscale retinex with color restoration (MSRCR), which
consisted of four main components: illumination estimation, guided operation filter, fog-free image
reconstruction, and white balance operation. This highly effective method was used to improve image
contrast and detail and produced excellent results. Tang et al. [116] developed a more advanced
technique for underwater image enhancement that relied on Retinex and was suitable for multi-scene
images. First, the images were pre-corrected to edit the pixel distribution and decrease the dominant
color. Then, a multiscale Retinex with an intensity channel was applied. Finally, they applied infinite
impulse response and down-sampled using Gaussian filtering to increase the processing speed.

Zhang et al. [117] developed a technique that resolved inferior image quality by enhancing the low
contrast and color cast prevalent in underwater imaging. Their developments in color correction used
the adaptive contrast enhancement technique for underwater images. First, the dedicated fractions
were used to compensate for the lower color channels computed by considering the ratio of the
difference between the lower and upper channel to the lower color channel. Then, the adaptive contrast
enhancement technique was used to generate the underwater images with a stretched foreground and
background. Finally, they applied an unwrap mask for sharpness.

4.2.4. Contrast-based Image Enhancement

Contrast contributes significantly to the subjective evaluation of underwater image quality. It
refers to the brightness difference between dark and light areas in images. The luminance disparity
reflected from two neighbouring surfaces creates contrast, and this deviation is the visual property
that makes certain objects more distinguishable than others.

Dixit et al. [118] presented a method for image enhancement that was depended on the DCP with
ACCLAHE and HF. The DCP computed the blur region and removed them. ACCLAHE estimated the
maximum bin height in a local histogram of the images and redistributed the pixels equally to every
gray level. The HF algorithm was used for enhancing underwater images.

Wang et al. [119] presented a method for enhancement of underwater image that contributes
significantly to ocean research. This method depended on the model of a virtual retina and image
quality assessment (IQA). The virtual retina is highly correlated with the human vision system and
is applied for improving the contrast of underwater images and removing noise. After this, the
adaptive enhancement of underwater images was measured with a type of no-reference image quality
assessment. This method achieved higher performance than those produced by other research.

Bindhu et al. [120] proposed a method for solving underwater image problems such as low
contrast, color loss, and haze. This method enhanced the underwater images’ quality using
interpolation enhancement that was based on increasing the underwater images’ contrast. This
method produced better entropy, a lower mean square error (MSE), and peak signal-to-noise ratio
(PSNR) values.
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Guraksin et al. [121] presented a method for underwater images that was depended on a wavelet
transform algorithm and the differential evolution algorithm. First, contrast adjustment on underwater
images. Then, homomorphic filtering was applied for the image’s brightness normalization. The
images were divided into R, G, and B components. wavelet transform and Haar wavelet decomposition
were applied to each channel. The method’s performance was tested by determining the PSNR, entropy,
and MSE.

Sankpal et al. [122] proposed a method for solving light attenuation in water that caused
degradation in underwater images. The method improved underwater images by correcting the
backward scattering effect using Rayleigh stretching for every color channel’s maximum likelihood
computation of the scale parameter. Correcting the signal corrected the underwater images.

Azmi et al. [123] proposed a method for underwater image color enhancement that consisted
of four steps. First, a method was introduced to neutralize the color cast. The color channels were
improved depending on the gain factors that were computed through the differences value between
inferior and superior color channels. Second, the fusion of dual-intensity depended on the mean and
median average. Third, the swarm intelligence depended on the equalization mean for enhancing
images. Finally, the technique of unsharp masking was applied for enhancing images.

4.2.5. Deep Learning-based Image Enhancement

Deep learning methods produce superior feature extraction results more rapidly because of
the deep network structure. These methods are widely used for defogging images [124], target
detection [125], and image segmentation [126]. For instance, Wang, Zhang, Cao, and Wang (2017c)
presented an effective and novel technique for underwater image enhancement that depended on a
CNN. This technique, named UIE-Net, enhanced the contrast and brightness of underwater images
degraded by dispersion and absorption. The UIE-Net framework’s tasks included haze removal and
color correction.

[127] presented an underwater image enhancement technique to solve underwater image
problems, caused by suspended particles, light absorption, and refraction. This highly accurate
method improved the image quality using a generative adversarial network (GAN) to increase the
reliability and safety of using visual perception. [128] developed a CNN-based method to improve
underwater images. The UWCNN is a very effective and accurate model of an automatic mechanism
for reconstructing clear and high-contrast underwater images. The UWCNN was efficiently trained
using a synthetic underwater image database.

To solve imaging problems such as scattering and attenuation through water, Li et al. [129]
proposed a correction method that depends on the supervised color transfer model. This model
designed the multi-term loss function that included the measure of cycle consistency loss, similarity
index loss, and adversary loss and its results were very effective and accurate. Li et al. [130]
presented comprehensive research and analysis on the enhancement of underwater images that
have been degraded because of light absorption and scattering. Using this technique, they compiled
the underwater image enhancement benchmark (UIEB), a real dataset that contains 950 images that
were trained using CNNs. The comprehensive study was analyzed quantitatively and qualitatively.

Uplavikar et al. [131] developed a technique for underwater image enhancement to resolve light
scattering and attenuation that reduces image detail and contrast. This method solved a water-type
diversity problem that hindered underwater image enhancement. This was done by learning and
defining the content features of underwater images using untangling the annoyances of water types. Li
et al. [132] developed an effective method to improve underwater images based on using a CNN that
processed the underwater scene prior. The method combined the underwater image’s physical model
and the underwater scene’s optical properties. This method was used to solve imaging problems such
as light absorption and scattering that degraded the contrast and visibility in images. This method
directly reconstructed clear images with high contrast.
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Hu et al. [133] developed a method for enhancing underwater images degraded because of
light scattering and absorption. A GAN that efficiently completes high-quality underwater image
style conversions was applied to underwater image enhancement. Despite being widely used, GANs
are affected by the quality of underwater images. This research added the natural image quality
assessment (NIQE) index to the GAN algorithm to better compare underwater images. Tang et al. [134]
proposed a more generative network based on attention U-Net that had attention gate mechanism. This
gate filtered invalid features and saved texture, contour, and style information. This paper used three
different loss functions to evaluate image quality for color, global content, and structural information.

4.3. Fusion of Restoration and Enhancement

Recently, many studies have tended to work on restoring and enhancing underwater images
rather than working on just one of them. The fusion approach takes advantage of two models to
increase brightness, contrast, clarify details, increase visibility, and remove noise using many filters.
For example, Gao et al.[135] developed a method for restoring and enhancing underwater images.
First, it drew on the prior dark channel in the image dehazing field to rectify and estimate the bright
channel image, transmittance image, and atmospheric light. After applying these methods, restoration
was performed. Second, these restored images were enhanced very effectively through histogram
equalization with excellent results.

Zhou et al. [136] proposed a technique for underwater image restoration and enhancement to
solve image problems, such as the lack of details and color deviation. This technique enhanced the
visual effect and quality in underwater images. First, this method applies color restoration by adjusting
the pixel value. Then, for color enhancement, the histogram is applied on the H channel to the source
of the underwater images. Finally, for image enhancement, the edge preservation method is used.
This method is very effective and accurate. Luo et al. [137] presented a technique for restoring and
enhancing underwater images. Three techniques were applied: contrast optimization, color balancing,
and histogram stretching. For color balancing, the scalar values of the R, G, and B channels were
renewed to match the three channels’ distributions. Then, the optimized contrast algorithm was
applied. The histogram stretching technique depends on the red channel for contrast and brightness
improvement. This method enhances the underwater image quality and increases the contrast.

Dewangan et al. [138] developed a method for restoring and enhancing underwater images. It
improves the underwater image clarity. They used HSV filters to enhance the images. It does not need
any segmentation. The applied restoration and enhancement were accurate for object detection. Also,
this method applied haze removal from underwater images that helped produce depth information
from the vision techniques. This method includes many steps for underwater image enhancement that
do not eliminate unwanted noise but enhance an image’s illumination, contrast, and visual quality.

Sequeira et al. [139] presented a method for enhancing and restoring underwater images that
depends on processing them. This method applies the innovative algorithm for underwater image
restoration and enhancement in a single underwater image processing technique. Their restoration
depends on an effective red channel algorithm for the blue channel, as the red color channel has
no intensity underwater. After that, the integrated color model is applied for underwater image
enhancement. The results of these algorithms showed high contrast and were more realistic.

Daway et al. [140] developed a method for the restoration and enhancement of underwater
images. Images were improved by applying color correction. The color restoration depended on the
integrated color model with Rayleigh distribution (CRBICMRD). which was used for color restoration
in the RGB and YCbCr model for color transformation. This method applied the multiscale retinex
technique with unsupervised color correction, color restoration, and Rayleigh stretching. It was highly
effective and improved the images quality.

Zhou et al. [21] developed a technology for resolving the low contrast and color distortion
problems. It depended on the Jaffe-McGlamery model. The maximum bright proportions were
applied for color correction of the underwater images. After that, a histogram was applied for contrast

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2023                   doi:10.20944/preprints202307.0585.v1

https://doi.org/10.20944/preprints202307.0585.v1


24 of 54

enhancement. Finally, two-level wavelet decomposition of the color-corrected and contrast-stretched
underwater images was performed.

5. Underwater Image Analysis Techniques

This section reviews the most prominent image analysis techniques, including histogram
equalization, adaptive histogram equalization, CLAHE, histogram sliding, brightness preserving
bi-histogram equalization, generalized unsharp masking, contrast stretching, noise filtering, discrete
wavelet transform, discrete cosine transform, and dark channel prior.

5.1. Histogram Equalization (HE)

The histogram equalization (HE technique) is applied to improve underwater images and increase
the contrast in images [141]. It extends the intensity of the gray-level across the entire range in
underwater images and enhances the underwater images’ contrast using a histogram. This technique
is highly effective in cases of low-contrast images. If the image has high contrast, this method may
aggravate the condition. It is calculated by Equation 3.

H(i) = round(
cd f (i)− cd fmin

(M ∗ N − cd fmin)
∗ (L − 1)) (3)

where i is the pixel value. M ∗ N represents image pixels. L is the gray level number. cd fmin is the
value of minimum non-zero of cumulative distribution function.

5.2. Adaptive Histogram Equalization (AHE)

This modified version of the HE technique [142] applies multiple histograms to various sections of
the same underwater image to improve the contrast. In HE, the same transform functions are applied
to transform each pixel in the underwater image, consequently this technique is inadequate for image
enhancement. AHE uses different transform functions to transform each pixel in the image to improve
contrast. AHE solves the problems of HE, but its computational cost is high.

5.3. Contrast Limited Adaptive Histogram Equalization (CLAHE)

CLAHE is a modified version of the AHE technique [143]. AHE causes excessive noise
amplification in underwater images but CLAHE limits this noise by decomposing the underwater
image into several sub-blocks and performing HE on each part of the entire image. The disadvantages
of CLAHE are that it generates ring and noise artifacts in the flat regions in images [144].

J = (jmax − jmin) ∗ P( f ) + jmin (4)

where j is the new value of pixel and P( f ) is the cumulative probability distribution [145].

5.4. Histogram Sliding

Histogram sliding is a technique for graphically illustrating pixel intensity values [146]. It is
applied to manipulate brightness in underwater images. It adjusts the darkness or brightness in images
to maintain the relationships between gray-level values. When sliding it, the entire histogram is shifted
only either to the right or left. This makes underwater images clearer. It is calculated by adding or
subtracting a fixed number of gray-level values.

F∼(i, j) = F(i, j) + o f f set (5)

where the offset is the amount of histogram sliding. If the offset is positive, the contrast increases and
the image is brighter, but if it is negative, the image is darkened.
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5.5. Brightness Preserving Bi-Histogram Equalization (BBHE)

BBHE splits the degraded underwater image into two different and distinct images depended on
the average of the input image [147]. For every image, histogram equalization is computed to improve
it. If the first enhanced image has an intensity lower than the mean, it is scaled with intensity values
between 0 and the mean. If the second equalized image has intensity values higher than the mean, t
is scaled with the intensities values between the mean and 256. Although this method increases the
image contrast, it requires complicated and specified hardware.

5.6. Generalized Unsharp Masking (GUM)

GUM is applied to enhance the sharpness and underwater image contrast [17]. It enhances
underwater images by processing the residual and the model component. It reduces the halo effect
by applying edge-preserving filter techniques. It also solves the out-of-range problem using tangent
and logarithmic ratio methods. Although this method solves the halo effect and range problems, edge
preservation is reduced.

5.7. Contrast Stretching

Contrast stretching is an effective and simple technique that improve the contrast of images by
stretching the intensity values range [148]. It adjusts every image’s pixel value to apply the structure
visualization to both the lighter and the darker regions of the underwater image. Image contrast is the
difference value between the minimum and maximum pixel intensity. It has some disadvantages; in
low-contrast images, specific details are very difficult to compute.

5.8. Noise Filtering

Noise filtering is a set of filters and processes for removing noise in underwater images. It
is applied in many image processing applications. Many filters are applied to remove noise from
underwater images. Filters are chosen according to the noise type and filter behavior. For example,
to remove Gaussian noise, the Gaussian/Bilateral filter is applied, and the median filter is applied
to remove salt and pepper noise. Figure 5 shows a classification of the various types of image noise
filters.

Figure 5. Classification of image noise filters.

5.9. Discrete Wavelet Transform (DWT)

The DWT divide an image into several sets, where each is a time series of coefficients that describe
the time evaluation of the image in the frequency domain [149]. Function Fn(x) is classified into the
weighted sum of the base functions φjo,k(x) and ψj,k(x) by applying the DWT.
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Fn(x) =
1√
M

∑
k

wφ(jo, k)φjo,k(x)+

1√
M

∞

∑
j=jo

∑
k

.Wψ(j, k)ψj,k(x), j, kǫZ

(6)

where the jo is the starting scale, M is the signal length. wφ(jo, k) and Wψ(j, k) are the approximation
coefficients. Images have two-dimensional, but DWT has one dimension. Therefore, the tensor product
is computed for wavelet and scaling functions. For the size M and N, the decomposition of images f(x,
y), are calculated by Equation 8.

φ(x, y) =φ(x)φ(y), ψH(x, y) = ψ(x)φ(y)

ψv(x, y) = φ(x)ψ, ψD(x, y) = ψ(x)ψ(y)
(7)

f (x, y) =
1√
M

∑
m

∑
n

wφ(jo, m, n)φjo,m,n(x, y)+

1√
MN

∑
i=H,V,D

∞

∑
j=jo

∑
m

∑
n

wi
ψ(j, m, n)ψi

i,m,n(x, y)
(8)

where j, m, nǫZ decomposes the signal through high pass filter and low pass filter. X and Y are the
signal directions and are applied for making the four sub-bands of the underwater image wφ(j, ., .),
WH

ψ (j, ., .), WV
ψ (j, ., .), and WD

ψ (j, ., .). This approach decomposes the underwater image into four
sub-bands: LH, LL, HH, and HL. For recomposing the underwater image, the inverse of DWT is based
on approximation and detail coefficients.

5.10. Discrete Cosine Transform (DCT)

The DCT is the simplest transform technique applied in image compression and image processing
applications [150]. It characterizes the underwater image as the sum of sinusoids having various
frequencies and magnitudes. The purpose of the DCT is to focus most information in the signal’s
low-frequency components owing to its powerful energy compression. It uses interpixel redundancies
to increase the high-quality decorrelation of most images. The DCT decomposes the underwater image
into sub-bands; each band is critical. It is calculated by using Equation 9.

Fn(u, v) = α(u)α(v)
N−1

∑
x=0

M−1

∑
x=0

.cos[
π.u
2.m

(2y + 1)] (9)

where u = 0, 1, ..., M − 1; and v = 0, 1, ..., N − 1 is the pixel intensity is f (x, y) in row x and column y.
The α(u) and α(v) functions calcuated by Equation 10.

α(u), α(v)







√

1
N f oru, v ≤ 0

√

2
N f oru, v 6= 0

(10)

5.11. Role of Evolutionary Algorithms in Contrast Enhancement

EAs are robust and stochastic metaheuristics from evolutionary computing and are applied to
solve optimization problems in image processing applications. These algorithms, such as particle
swarm optimization (PSO) [151], artificial bee colony [152], and genetic algorithms [153] are applied to
enhance the contrast of underwater images. These algorithms aim to maximize the suitability criterion
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for underwater image enhancement and are applied to compute the optimal gamma corrections
parameters. Gamma correction is a simple and important technique that produces normal-looking
images while retaining brightness. However, selecting the optimal value for gamma is a difficult task.

5.12. Dark Channel Prior (DCP)

DCP depends on the key observation and most of the local spots in haze-free outdoor images.
These images include a few pixels with very low intensities in at least one color channel. For example,
in the RGB channels, any of the three colors red, green, or blue, may have an intensity value of less
than, or close to 0. This means that the minimum intensity value in the region has the smallest quantity
value [66]. This method is very easy to implement. In addition, it requires less processing time and
negates the halo effect.

6. Limitations

Exploring the underwater environment by capturing images is critical and is conducted by
employing skilled divers, optical cameras, specialized hardware, or underwater ROVs. With the
exception of optical cameras, all other systems have many disadvantages, such as limited field of view,
depth limits, and complex processes. Due to the unexpected nonlinear hydrodynamic effects and the
lack of an accurate model, the ROV control system is complicated.

Underwater exploration is expensive as it requires the use of highly skilled divers. For a single
investigation, standby divers and supervisors may be required. Moreover, a limited time amount can
be spent underwater, especially when a diver conducts inspections. Consequently, the time required
for investigation has increased. Using underwater image enhancement techniques, this drawback
can be considerably mitigated. Based on the aforementioned challenges, underwater image analysis
limitations can be classified into environment-based and image-based limitations, as discussed in the
following subsections.

6.1. Underwater Environment-based Limitations

These limitations are related to factors encountered in the underwater environment, such as
equipment, refraction, non-uniform illumination, motion, scattering, and absorption. These limitations
negatively affect underwater images and videos and make them hazy and degraded.

6.1.1. Equipment

Underwater images are captured using two camera equipment options. The first involves using
an existing land camera with a housing unit. This housing unit must be enclosed with diving silicon to
maintain a waterproof seal. This solution is the best option for photographers who have a high-quality
land camera and are unable to buy an expensive underwater camera. The second option is using a
specialized underwater camera. These specialized cameras differ in quality and price.

6.1.2. Refraction

Refraction describes how light bends as it passes from one medium to another [154]. When
reflected from an object light travels through water and passes through the underwater camera’s glass
and air, and the object appears approximately 25% larger and closer than they actually are. Refraction
makes it difficult to focus sharply on the subject, leading to blurred photos. Refraction can be used to
reconstruct the underwater scene [155,156].

6.1.3. Non-uniform Illumination

During underwater light propagation, light levels weaken as the depth increases. Natural light is
not always available and varies depending on the time of the day. When the sun is directly overhead,
the surface of the water reflects the least amount of light. The weather also influences the light
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availability. If the weather is stormy, turbulent water will significantly affect light conditions. There
are many algorithms for solving non-uniform lighting [157–159].

6.1.4. Motion

Motion occurs when the relative position between the imaging device and the target object changes
owing to movement. Such movements between the imaging device and target objects, in addition
to the movement of underwater currents, cause motion blur [160–162], which affects underwater
images. Motion blur produces distortions in the underwater image and degrades the luminance
spectrum. Therefore, capturing images of stationary subjects such as corals or rock formations is easier
than moving underwater objects. Many algorithms deblur underwater images for better clarity and
quality [163].

6.1.5. Scattering

Scattering denotes the angular light distribution deflected by suspended particles in one direction
at a specified wavelength [12,164,165]. It occurs by light falls on objects and is deflected and reflected
many times by particles in the water before reaching the camera. Scattering degrades the contrast and
visibility, blurs detail, and causes fogging in underwater images.

6.1.6. Absorption

Absorption occurs when one substance is absorbed or inextricably blended into another [83,166]
and is divided into light absorption and color. Because water is a good natural light filter, it absorbs a
fraction of the light that passes through it. The general formula for underwater light loss is that half the
light is lost for every 10 meters of depth. Additionally, the available light is not constant and changes
depending on the time of day and other factors such as the weather and surface conditions. The images
do not exhibit a hue but green or blue for color absorption. As a result, the longer wavelengths of light,
yellow, red, and orange are absorbed by the water.

6.2. Underwater Image-based Limitations

The limitations of underwater imaging have a degrading and hazy effect on the images’ quality.
Therefore, it is critical to use restoration and enhancement algorithms to underwater images and
videos. These limitations include low contrast, noise, blurring, poor visibility, and haze. Solving the
limitations in underwater imaging is easier than changing the environmental limitations.

6.2.1. Low Contrast

Contrast is the computed difference in color or luminance that allows objects to be distinguishable
from other objects through the same field of view [167]. Poor illumination, scattering, and absorption
reduce contrast. This low contrast degrades the underwater images and reduces visibility and details
thus contrast enhancement is a critical process and deciding whether the contrast is global or local
is crucial. Local contrast means dividing the image into small regions, and contrast enhancement is
performed on each independently. Global contrast indicates an increase of contrast in the entire image.

6.2.2. Noise

Image noise denotes random variations or changes in color or brightness [13,168]. This noise
affects the resolution of the underwater images. There are several types of noise, such as:

• Salt and pepper noise: This signifies the smaller and larger grayscale values of a specified pixel
or region.

• Gaussian noise: This is the most common noise type and is a statistical noise with a probability
density function equal to normal distribution.

• Fixed mode noise: It is the underwater clutter that degrades the image.
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Such noise degrades underwater images, therefore, noise removal methods are critical for image
enhancement.

6.2.3. Blurring

Blurring is used for removing the edges to smooth an image. In the case of underwater images,
blurring degrades them and obscures detail [169–171]. Because light is scattered and absorbed,
underwater images are severely distorted by blurring and color cast, which decreases the image
quality. The low quality makes it difficult to process images for object detection, classification, and
segmentation. Due to the blurring effects in underwater images, deblurring methods are in high
demand for image enhancement and restoration.

6.2.4. Poor visibility

Visibility means whether objects are detectable by sight or the distance at which light or objects
can be discerned. The difficulty associated with ensuring the objects visibility at long or short distances
in underwater scenes poses a challenge for the image processing community. Due to the backscatter
and absorption caused by noise and suspended particles, such images suffer from poor visibility, which
is a major problem for oceanic applications in computer vision. Light attenuation limits the viewing
distance to about twenty meters in clear water and five meters or less in turbid and murky water.
The poor objects visibility at short or long distances in underwater scenes causes image processing
problems. Many studies have improved the visibility of underwater images [13,172].

6.2.5. Hazy

Hazy images are captured in foggy or hazy weather conditions and degraded by absorption and
scattering. These hazy images have weak contrast and low visibility, rendering it more difficult to
identify the objects in images by human vision. Due to the many hazy effects on underwater images,
the enhancement of hazy underwater images is important [173,174]. Figure 6 indicates some examples
from the datasets of underwater images with different limitations.

Figure 6. Some examples of underwater images from available datasets with various scenes limitation:
(a) low light, (b) low contrast, (c) haze, and (d) blur.
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7. Underwater Image Datasets

In this section, we present the underwater imaging datasets that researchers use for enhancing
and restoring underwater images. There is no complete dataset for underwater imaging because
collecting underwater images is very difficult. Most underwater datasets have limitations such as few
categories, single target objects, and imperfect information for labeling. Figure 7 shows some examples
of images from underwater images datasets.

Figure 7. Samples of underwater images from the available underwater datasets.

1. Real-World Underwater Image Enhancement (RUIE) Dataset

The RUIE dataset [175] is a large-scale dataset that contains 4000 underwater images from
multiple views. According to the underwater image enhancement network (UIE) algorithms, the
RUIE dataset is classified into three subsets: the underwater image quality set (UIQS), underwater
color cast set (UCCS), and underwater task-oriented test suite (UHTS), as presented in Table 9.
These subsets are used to restore color cast, enhance visual appearance, and aid in computer
vision detection/classification at a higher level.

2. Underwater Image Enhancement Benchmark (UIEB) Dataset

The UIEB dataset [130] contains 950 real-world underwater images, 890 of which have a
corresponding reference image. The remaining 60 were retained as testing data. This dataset
is used in qualitative and quantitative underwater image enhancement algorithms. The UIEB
dataset includes many levels of resolution and covers several scene/main object categories.

3. Enhancement of Underwater Visual Perception (EUVP) Dataset

The EUVP dataset [176] is a large-scale dataset that includes a paired and unpaired collection
of low and good-quality underwater images used for adversarial supervised learning. These
images were collected using seven different cameras in different situations. The unpaired data
was collected by six human assistants and the paired data was collected by relying on human
perception. This dataset includes 12K paired and 8K unpaired images, as shown in Tables 7
and 8.
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Table 7. EUVP paired dataset.

Dataset Name Training Images Validation Images Total Images

Underwater Dark 5550 570 11670
Underwater ImageNet 3700 1270 8670

Underwater Scenes 2185 130 4500

Table 8. EUVP unpaired dataset.

Poor quality Good quality Validation Total Images

3195 3140 330 6665

4. U-45 Dataset

The U-45 dataset [177] is an effective public underwater test dataset that includes 45 underwater
images chosen from among real underwater images. This dataset contains the low contrast, color
casts, and haze-like effects that contribute to image degradation.

5. Jamaica Port Royal Dataset

The Jamaica Port Royal dataset [178] was gathered in Port Royal, Jamaica, at the site of a
submerged city containing both natural and artificial structures. These images were collected
using a handheld diver rig. Sixty-five hundred images were collected during a single dive at a
maximum depth of 1.5 m above the seabed.

6. Marine Autonomous Robotics for Interventions (MARI) Dataset

The MARI dataset [179] aims to improve the development of cooperative AUVs for underwater
interventions in offshore industries, rescue, search, and various types of scientific exploration
tasks. This dataset presents diverse underwater videos and images captured underwater by a
stereo vision system.

7. MOUSS

The MOUSS dataset [24] was obtained by using a stationary camera on the ocean floor. At 1–2 m,
with sufficient ambient lighting, 159 images of fish and other relevant objects were acquired. The
test dataset was a combination of images from training and new collections.

8. MBARI Dataset

The MBARI dataset [24] was collected from different regions and consisted of 666 images of fish
and other relevant objects. This dataset was obtained by the Monterey Bay Aquarium Research
Institute.

9. AFSC Dataset

The AFSC dataset [24] was collected from the ROV that was placed underwater and equipped
with an RGB video camera. It consisted of numerous videos from various ROV missions and
contained 571 images.

10. NWFSC Dataset

The NWFSC dataset [24] was collected using a remotely operated vehicle and looking downward
at the ocean floor. The first dataset contained 123 images of fish and other objects near the seabed.

11. RGBD Dataset

The RGBD dataset [24] collected for underwater image restoration and enhancement contained a
waterproof color chart in the underwater environment. It consisted of over 1100 images.

12. Fish4knowledge Dataset

The Fish4knowledge dataset [180] consisted of fish data collected from a live video dataset. It
had 27370 fish images. The entire dataset was divided into 23 clusters, with each distinct cluster
representing a particular species.

13. Wild Fish Marker Dataset

The Wild Fish Marker dataset [181] was collected using a remotely operated vehicle under
different ocean conditions. This dataset contained fish images depending on the cascade
classifiers of Haar-like features. These images were not unconstrained as the underwater

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2023                   doi:10.20944/preprints202307.0585.v1

https://doi.org/10.20944/preprints202307.0585.v1


32 of 54

environment was variable because of the moving recording platform. It included an annotated
training and validation dataset and independent test data.

14. HabCam Dataset

The HabCam dataset [24] was collected from underwater images on the seafloor. The HabCam
vehicle was used for recording. It flew over the ocean taking six images in one second. These
images are critical for studying the ecosystem and advancing the marine sciences.

15. Port Royal Underwater Image Dataset

The Port Royal underwater image dataset [178] was collected using a GAN to create realistic
underwater images. These images were taken using a camera onboard autonomous as well as
operated vehicles. This method is capable of recording high-resolution underwater images.

16. OUCVISION Dataset

The OUCVISION dataset [182] is a large-scale underwater image enhancement and restoration
dataset which is used for recognizing and detecting salient objects. It contains 4400 images of
220 objects. Each object was taken with four pose variations (right, left, back, and front) and five
spatial regions (bottom right, bottom left, center, top right, top left) to obtain 20 images.

17. Underwater Rock Image Database

The underwater rock image database [24] was collected to enhance and restore underwater
images. It depended on the GAN to generate realistic underwater images.

18. Underwater Photography Fish Database

The underwater photography fish database [24] was collected from reef- and fish-life photographs
taken in locations all over the world, such as the Indian Ocean, Red Sea, etc. This dataset
contained many reef fish species, including Parrotfish, Butterflyfish, Angelfish, Wrasse, and
Groupers. It also includes non-fish subjects like nudibranchs, corals, and octopi.

Some underwater image datasets are available in https://github.com/xahidbuffon/Awesome_
Underwater_Datasets. Table 9 indicates comparison between all datasets.

Table 9. List of underwater imaging datasets.

Dataset Source No. of Images Objects Resolution

RUIE [175] Dalian Univ. of Technology
UIQS 3630 (726 × 5)
UCCS 300 (100 × 3)
UHTS 300 (60 × 5)

Sea cucmbers,
scallops,

and urchins
400 × 300

UIEB [130] —– 950 Diverse objects Variable
EUVP [176] —– 31505 Diverse objects 256 × 256

U-45 [177]
Nanjing Univ. of

Information Science and
Technology, China

45 Diverse objects 256 × 256

Jamaica Port
Royal [178]

—– 6500
Fishes and other
related objects

1360 × 1024

MARI [179] —– variable
Fished and other

related objects
1292 × 964

MOUSS [24]
CVPR AAMVEM

workshop
159 Fishes 968 × 728

MBARI [24]
Monterey Bay Aquariam

Research Insitute
666 Fishes 1920 × 1080

AFSC [24]
CVPR AAMVEM

workshop
571

Fishes and other
related objects

2112 × 2816

NWFSC [24]
Integrated by

CVPR AAMVEM
workshop

123
Fishes and other
related objects

2448 × 2050

RGBD [24] Tel Aviv Univ. 1100 Diverse objects 1369 × 914
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Table 9. Cont.

Dataset Source No. of Images Objects Resolution

Fish4knowledge [180]
The Fish4knowledge

team
images from

underwater videos
Diverse objects Variable

Wild Fish
Marker [181]

NOAA Fisheries
1934 positive images

and 3167 negative images,
2061 fish images

Fishes and other
related objects

Variable

HabCam
[24]

Integrated by
CVPR AAMVEM

workshop
10465

Sand dollars,
scallops, rocks,

and fishes
2720 × 1024

Port Royal
Underwater image [178]

Real scientific surveys
in Port Royal

18091
Artificial and

natural structures
1360 × 1024

OUCVISION [182]
Ocean Univ. of

china
4400

Artificial targets
or rocks

2592 × 1944

Underwater Rock
Image Database [24]

Univ. of Michigan 15057 Rocks in pool 1360 × 1024

The underwater
Photography

Fish Database [24]
Amateur contribution 8644

Reef fishes,
Coral, and

others
variable

8. Underwater Image Quality Evaluation Metrics

Assessing the underwater images quality is an essential task that can be used automatically and
accurately. Image quality assessment (IQA) approaches are categorized to include: (a) objective and (b)
subjective methods [183,184] for automatically assessing images’ quality.

Subjective image quality metrics are time-consuming, expensive, and not not sufficient for
most real-time applications. Objective image quality assessment techniques apply mathematical
and statistical models that rely on the human visual system (HVS) to compute images’ quality.

Objective IQA techniques are classified into three groups; full reference (FR), reduced reference
(RR), and no reference (NR), as indicated in Figure 8. with FR IQA the underwater reference image is
available. With the RR AQI, partial information from underwater images is available. With NR IQA,
the reference image is not applicable. In addition to the conventional evaluation metric, to evaluate
the underwater image quality effectively, specialized metrics are presented in the literature as defined
below and listed in Figure 9.

Figure 8. Classification of objective image quality assessment methods.

Figure 9. Classification of specialized underwater image quality assessment metrics.

• Mean Square Error (MSE): calculates the squared error between the original and enhanced
images [98]. The lower the MSE, the better the quality and the less error. The MSE is computed
mathematically using Equation 11.
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MSE =
1

MN

M

∑
i=1

N

∑
j=1

[F(i, j)− E(i, j)]2 (11)

where the M × N is the image size, F(i, j) is the original image, and E(i, j) is the enhanced image.
• Peak-Signal-to-Noise Ratio (PSNR): computes the peak error and is the percentage of the quality

measurement between the original, and enhanced images [98]. The greater the PSNR, the good
the reconstructed or enhanced image quality. It is calculated from the MSE using Equation 12.

PSNR = 20 log10
MAXF√

MSE
(12)

where MAXF is the maximum pixel value in an image and is 255 in case of gray level image.
• Entropy: represents a statistical value of the information in the image. It represents the

randomness degree in the image that can be applied to characterize the texture of the
image [185,186]. The higher entropy value indicates that the image has minimal information loss.
It is computed by using Equation 13.

H(F) = −
255

∑
i=0

pi log2 pi (13)

where i is the gray level number in a pixel in the image F and pi is the probability of intensity i.
• Structure Similarity Index Measure (SSIM): is applied to compute the similarity value between

the original and enhanced images. It is presented by Wang [187] and formulated in [188], [189].
x and y are the patch locations of two different images. The SSIM involves three measures:
contrasts C(x, y), brightness B(x, y), and structure S(x, y). The greater the SSIM value, the better
the enhancement and the less distortion. The SSIM is computed by using Equation 14.

SSIM(F, E) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(14)

where µx, µy are the values of means and the σ2
x , σ2

y are the values of standard deviation of x and
y patches of pixels. σxy is the covariance value of x and y patches of pixels and C1 = (k1L)2 and
C2 = (k2L)2 are the small constant values to prevent the instability. L is the dynamic range value
of pixels, K10.01 and K2 = 0.03.

• Colour Enhancement Factor (CEF): This is used to represent the enhancement effect. The greater
the CEF, the better quality of the enhanced image. It is calculated by using Equation 15.

CEF =
CM(F∼)
CM(F)

(15)

where CM(F∼) and CM(F) denote enhanced and original images. The CM(F) =
√

σ2
α + σ2

β +

0.3
√

µ2
α + µ2

β. σ2
α and σ2

β are the standard deviation values, and µ2
α and µ2

β are average values of

α and β.
• Contrast to Noise Ratio (CNR): This is used to compute the underwater image quality [190]. It

is the signal amplitude associated with the surrounding noise in underwater images.

CNR(F, F∼) =
µi − µn

σn
(16)

where µi represents the original image average value, µn is the enhanced image average value,
and σn is the standard deviation.
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• Image Enhancement Metric (IEM): computes the sharpness and contrast in an underwater
image by classifying the image into non-overlapping blocks [191]. It represents the mean value
ratio of the center pixel’s absolute difference from eight neighbors in the original and enhanced
images. It is calculated by using Equation 17.

IEM =

k1
∑

l=1

k2
∑

m=1

k3
∑

n=1
Fm,l

e,c − Fm,l
F,c

k1
∑

l=1

k2
∑

m=1

k3
∑

n=1
Fm,l

F,c − Fm,l
F,n

(17)

where k1 and k2 are non-overlapping blocks. SFS and e are original and improved images. Fm,l
e,c

and Fm,l
F,c are the intensities of the center pixel. Fm,l

e,n and Fm,l
F,c are the neighbours intensities from

the center pixel.
• Absolute Mean Brightness Error (AMBE): This indicates the brightness that is preserved after

image enhancement [192]. It is the value of the absolute difference between the average of the
original and improved underwater images. A median AMBE value denotes good brightness.

AMBE(F, e) = µF − µe (18)

where µF and µe are the average values of the original and improved image.
• Spatial Spectral Entropy based Quality index (SSEQ): This is an efficient and accurate image

NR IQA model presented by [193]. It computes the underwater image quality when it is affected
by many distorting factors. It is computed by using Equation 19.

E = −∑
i

P(i, j) log2 P(i, j) (19)

where P(i, j) represents the spectral probability map that is computed by Equation 20.

P(i, j) =
C(i, j)2

∑i ∑j C(i, j)2 (20)

• Measure of Enhancement (EME): This computes the contrast in underwater images and assists
in selecting the processing parameters [194,195]. It is computed using Equation 21.

EMEm1m2 = max(
1

m1m2

m1

∑
i=1

m2

∑
n=1

20 log
Xw

max;n,1

Xw
min;n,1

) (21)

where Xw
max;n,1 and Xw

min;n,1 are the maximum and minimum values of image within the block
wn,1.

• Measure of Enhancement by Entropy (EMEE): It computes the contrast in underwater
images [194,195].The greater the EMEE value, the better quality of the image. It is calculated by
using Equation 22.

EMEm1m2 =max(
1

m1m2

m1

∑
i=1

m2

∑
n=1

α
Xw

max;n,1(θ)
α

Xw
min;n,1(θ)

∗ log
Xw

max;n,1(θ)

Xw
min;n,1(θ)

) (22)

where m1, m2 are the blocks into which the underwater image is divided.
• Root Mean Square Error (RMSE): It is applied to compute the difference value between the

original and enhanced images. It calculates the square root of MSE. The lower the RMSE value,
the better contrast value for underwater images. It is calculated by using Equation 23.
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RMSE =

√

√

√

√

MN

M

∑
i=1

N

∑
j=1

][F(i, j)− e(i, j)]2 (23)

where F and e represent the original and improved images.
• Underwater Colour Image Quality Evaluation metric (UCIQE): It is a linear combination of

saturation, contrast, and chroma [196]. It computes the effects of low contrast, non-uniform
color cast, and blur issues that degrade underwater images. It converts the RGB space into
the CLELAB color space as it approximates the human eye’s visual perception. The higher
UCIQE value means that underwater images have a good balance between contrast, chroma,
and saturation. It is computed using Equation 24.

UCIQE = c1 × σchromo

+ c2 × contrast1 + c3 × µsaturation

(24)

where c1, c2, and c3 represent the weighted coefficients, σchromo indicates the standard deviation,
contrast1 is the contrast, and µsaturation represents the average value of saturation.

• Underwater Image Quality Measure (UIQM): measures the quality of underwater images and
depends on the model of the human visual system and functions without the reference image
[197]. It relies on the feature or measuring component of the underwater images to represent the
visual quality. It consists of three measurements, the underwater image sharpness measurement
(UISM), the underwater image color measurement (UICM), and the underwater image contrast
measurement (UIConM). A higher UIQM value denotes a higher quality value for underwater
images.

UIQM =Coe f f1 × UICM + Coe f f2 × UISM+

Coe f f3 × UIConM
(25)

• Colourfulness Contrast Fog density index (CCF): This computes the color quality of underwater
images and is the non-referenced IQA model [198]. It is a weighted combination of contrast, the
colorfulness index, and fog density. It is calculated using Equation 26.

CCF =w1 × Color f ulness + w2 × contrast+

w3 × Fogdensity
(26)

The colorfulness results from absorption and blurring, whereas low contrast, caused by
forwarding scattering and fog density, is due to backward scattering.

• Average Gradient (AG): This is a full reference method that measures the underwater images
sharpness. It computes the rate change per minute as it presents in underwater images. It is
computed using Equation 27.

AG =
1

(L − 1)(M − 1)

L−1

∑
i=1

M−1

∑
J=1

∗
√

(∇xF(i, j))2 + (∇yF(i, j))2

(27)

where L and M represent the width and height of the underwater image, ∇x, and ∇y are the
gradient in the x and y directions.

• Patch-based Contrast Quality Index (PCQI): This predicts the perceived distortion of contrast
to the human eye [199]. It is based on the patch model instead of relying on global statistics. It
is based on three independent image quantities: structure, signal strength, and average. The
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greater the PCQI value, the better contrast values in underwater images. It is computed using
Equation 28.

PCQI(i, j) =
1
P

P

∑
k=1

lr(ik, jk)ls(ik, jk)lt(ik, jk) (28)

where P represents the patch number in the underwater image. lr, ls, and lt are the comparison
functions.

• Normalized Cross-Correlation (NCC): This evaluates the underwater images quality by
calculating similarities between the enhanced and original images. It represents the correlation
value in the image group [200]. The brightness of an underwater image varies due to lighting
conditions, so this is the essential reason for normalizing the image. NCC produces a result value
between -1 and 1. If the underwater images are uncorrelated, the value is 1; if the underwater
images are perfectly correlated, the value is -1.

NCC =
∑

M
i=1 ∑

N
j=1 F(i, j)× F∼(i, j)

∑
M
i=1 ∑

N
j=1(F∼(i, j))2

(29)

where F(i, j) is the original image and F∼(i, j) is the enhanced image. i and j are the image
coordinates. M and N are the pixel numbers in horizontal and vertical coordinates.

• Average Difference (AD): The average difference value calculates the differences between
filtered and low-quality images [200]. It calculates the mean value between the original and
the processed image. This measurement is quantitative and is applied for object detection and
recognition applications. Many image processing applications find the average value of the
difference value between images through this quantitative measure. The image quality is very
poor when the AD value is too high. It is computed using Equation 30.

AD =
1

MN

M

∑
i=1

N

∑
j=1

F∼(i, j)− F(i, j) (30)

where F∼(i, j) is the enhanced image and F(i, j) is the original image at i,j coordinates. M and N
are the number of image pixels in the horizontal and vertical coordinates.

AD =
1

MN

M

∑
i=1

N

∑
j=1

F∼(i, j)− F(i, j) (31)

where F∼(i, j) is the enhanced image and F(i, j) is the original image at i and j coordinates. M

and N are pixels of image in horizontal and vertical direction.
• Maximum Difference (MD): This computes the maximum error signals by calculating the

difference between the original and enhanced underwater images [201]. It uses a low-pass filter
for the sharp edges of underwater images. It is similar to AD. The higher the MD value, the
poorer the underwater images.

MD = MaxF∼(i, j)− F(i, j) (32)

where F(i, j) is the original image and F∼(i, j) is the enhanced image.
• Normalized Absolute Error (NAE): This computes the underwater images’ quality [202]. The

NAE value is inversely proportional to the image quality. If the NAE value is higher, the quality
of the underwater image is poorer.
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NAE =
∑

N
i=1 ∑

M
j=1 Abs((F∼(i, j)))

∑
N
i=1((F(i, j)))

(33)

where F(i, j) is the original image and F∼(i, j) is the enhanced image. Abs is the absolute error in
the underwater image.

The evaluation of algorithms used for enhancing and restoring underwater images of different
categories is very important. These evaluation measures provide the scores that represent the similarity
or distortion between the original and the enhanced images. These evaluations help to estimate the best
parameters for use in different applications. Underwater image quality metrics (IQM) help estimate
the quality of the underwater enhancement and restoration algorithms.

9. Performance Evaluation

Experiments were tested on several of the 890 images in the UIEB dataset for evaluating the quality,
quantity and computational complexity of the enhancement and restoration. Several restoration and
enhancement algorithms were tested on these selected images using six common evaluation metrics.
This section has been divided into four subsections: Experimental Setting, Qualitative Evaluation,
Quantitative Evaluation, and Computational Complexity.

9.1. Experimental Setting

Extensive experiments concerning subjective and objective evaluation were conducted on various
techniques for enhancing and restoring underwater images. The computer configuration for these
experiments was an Intel(R) core (TM) i7-9750H CPU @2.60 GHZ (Lenovo, Beijing, China); 16 GB
RAM; Microsoft Windows 10 (Microsoft, Redmond, WA, USA); MATLAB R2018a and python 3.6.

9.2. Qualitative Evaluation

Subjective evaluation is critical for visualizing the underwater image restoration and enhancement
effects. Figure 10 presents the subjective results for the restoration of five raw images selected from the
UIEB dataset using the following restoration algorithms: DCP [75], UDCP [78], MIP [70], IBLA [81], and
ULAP [72]. This figure indicates that the IBLA and ULAP algorithms restoration characteristics results
were superior because they adopt all underwater light attenuation to create the correct depth map.
Recent restoration methods only dehaze underwater images and cannot deal with color restoration
effectively for multiple underwater images. Therefore, the color corrections algorithms can be used in
preprocessing to enhance the color, brightness and contrast in restored images.

Figure 11 presents the subjective evaluation results for images enhancement on the same five
images using the following enhancement algorithms: HE [203], CLAHE [204], ICM [96], UCM [205]
and RGHS [99]. From these results, we note that the HE enhancement results are inferior. CLAHE
equally distributes red, green, and blue pixels thus enhancing underwater images and outperforming
HE. ICM indicates the equalization in the color casts. The UCM enhancement results are superior to
those of ICM. RGHS is based on adaptive parameters to avoid blind pixel redistribution or global
histogram stretching to reduce sharpness. RGHS exhibits a greater dehazing effect.
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Figure 10. Subjective comparative results for underwater images restoration on UIEB dataset. The
results are generated by using DCP, UDCP, MIP, IBLA and ULAP.

Figure 11. Subjective comparative results for underwater images Enhancement on UIEB dataset. The
results are generated by using HE, CLAHE, ICM, UCM and RGHS.

9.3. Quantitative Evaluation

A quantitative evaluation confirms the visual quality of the resultant underwater images by
objective evaluation and also validates the methods’ effectiveness. Objective analysis is computed
using image quality evaluation metrics such as SSIM, MSE, PSNR, PIQE, UCIQE, and UIOM. Tables 10
and 11 respectively present the quality metrics for five restoration algorithms and five enhancement
algorithms computed on five raw images from the UIEB dataset. To understand the obtained results,
we should take into consideration the following points. The lower MSE value indicates noise or
errors in the underwater images’ content. A higher PSNR indicates lower noise. A high PSNR and
low MSE indicate a good resultant image. When the SSIM values are nearer to 1 it indicates a good
similarity value. The higher the UIQM, the more balance in saturation contrast and the sharper are the
underwater images. The lower the PIQE, the more the underwater images are enhanced. The higher
the UCIQE, the more enhanced are the underwater images.
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Table 10. Quantitative evaluation of different restoration algorithms using underwater images from
UIEB dataset.

Image Algorithm MSE SSIM PSNR PIQE UCIQE UIQM

(a)

DCP 838 0.6 18.89 18.43 0.48 3.11
UDCP 775 0.9 19.23 20.92 0.51 2.71
MIP 1198 0.6 17.34 27.59 0.53 1.28
IBLA 1116 0.8 17.65 31.60 0.51 1.57
ULAP 237 0.8 24.38 26.30 0.56 2.35

(b)

DCP 5886 0.7 10.43 29.68 0.40 2.25
UDCP 12963 0.4 7.03 30.40 0.36 1.98
MIP 1655 0.2 15.94 25.18 0.51 2.65
IBLA 10530 0.3 7.90 30.57 0.42 1.33
ULAP 3703 0.3 12.44 17.13 0.60 2.92

(c)

DCP 314 0.7 23.16 28.61 0.55 2.15
UDCP 3655 0.6 12.50 28.35 0.52 2.03
MIP 4661 0.5 11.44 45.58 0.63 0.96
IBLA 1600 0.8 16.08 26.26 0.60 2.40
ULAP 3675 0.8 12.47 27.10 0.63 2.46

(d)

DCP 2807 0.6 13.64 51.66 0.47 2.30
UDCP 4617 0.5 11.48 53.30 0.46 1.79
MIP 2025 0.7 15.06 50.96 0.50 1.76
IBLA 974 0.6 18.24 47.02 0.50 1.37
ULAP 1359 0.7 16.79 49.24 0.49 2.12

(e)

DCP 1864 0.8 15.42 22.43 0.52 2.30
UDCP 4160 0.6 11.93 25.66 0.52 1.79
MIP 7004 0.5 9.67 36.25 0.68 1.76
IBLA 5152 0.5 11.01 35.72 0.54 1.37
ULAP 1550 0.6 16.22 25.05 0.58 2.12

Table 11. Quantitative evaluation for enhancement of underwater images on UIEB dataset.

Image Algorithm MSE SSIM PSNR PIQE UCIQE UIQM

(a)

HE 2472 0.7 14.19 19.61 0.60 3.31
CLAHE 1055 0.8 17.89 18.74 0.57 3.53
ICM 276 0.9 23.71 27.29 0.50 3.41
UCM 146 0.9 26.47 18.05 0.52 3.17
RGHS 156 0.9 26.19 19.93 0.53 2.08

(b)

HE 1530 0.6 16.28 15.96 0.61 3.30
CLAHE 815 0.7 19.01 18.01 0.50 3.22
ICM 1333 0.7 16.88 26.65 0.46 3.56
UCM 3826 0.2 12.30 23.52 0.48 3.03
RGHS 515 0.9 21.01 15.24 0.57 3.12

(c)

HE 2672 0.7 13.86 24.23 0.60 2.91
CLAHE 1812 0.9 15.54 21.51 0.58 3.17
ICM 594 0.9 20.39 16.76 0.56 2.71
UCM 2781 0.8 13.68 18.25 0.61 2.88
RGHS 531 0.9 20.87 23.42 0.58 2.27

(d)

HE 1575 0.7 16.15 45.38 0.59 2.70
CLAHE 735 0.8 19.46 49.06 0.53 2.44
ICM 1705 0.7 15.81 48.33 0.49 2.03
UCM 1005 0.8 18.10 47.62 0.54 2.59
RGHS 1274 0.7 17.07 49.73 0.55 2.71

(e)

HE 948 0.7 18.36 22.33 0.61 2.83
CLAHE 506 0.9 21.08 23.63 0.56 2.98
ICM 700 0.9 19.67 21.03 0.54 2.72
UCM 654 0.8 19.96 20.65 0.56 2.78
RGHS 413 0.9 21.96 21.13 0.58 2.71
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9.4. Computational Complexity

Although the quality of underwater image enhancement and restoration algorithms is critical, the
computational time, especially for real-time applications, should also be considered. Computational
time indicates how long an algorithm runs when enhancing or restoring images. Lower computational
times mean that the algorithm is more effective. Each algorithm’s running time for restoration and
enhancement is shown in seconds in Table 12.

Table 12. Computational time in seconds(secs) for restoration and enhancement algorithms of
underwater images on UIEB dataset.

Image DCP UDCP MIP IBLA ULAP HE CLAHE ICM UCM RGHS

(a) 13 11.88 15.2 30 0.02 0.03 0.03 3 7.2 4
(b) 13 12 24 90 0.1 0.04 0.04 3.3 7 4
(c) 48 43 48 130 0.6 0.07 0.16 11.19 24 14
(d) 91 85 60 190 0.12 0.13 0.12 22.2 40 28
(e) 7 14 7 50 0.1 0.02 0.02 3 4 3

10. Applications of Underwater Image Analysis

For increasing numbers of applications, capturing clear underwater videos and images is essential.
Researchers use underwater images or videos to gain valuable and useful information while studying
the underwater environment. In this section, the most common applications of this topic have been
introduced.

10.1. Underwater Navigation

Autonomous navigation by underwater vehicles for exploring underwater resources is a popular
research topic [17]. The main cause is the increasing need to collect underwater data such as mine
detection and environmental monitoring. Some underwater vehicles are focused on improving
underwater images.

10.2. Fish Detection and Identification

Boudhane et al. [206] developed a new method for preprocessing underwater images and
detecting and locating fish. This method consists of three steps. First, the noise was removed by
estimating the Poisson-Gaussian mixture and enhancing the underwater images. After that, they
applied the mean shift technique to decompose the underwater image into regions. Finally, these
regions were combined through an estimation that depended on the log-likelihood test.

Li et al. [207] presented a method for detecting fish food rests in underwater videos and images
by applying adaptive thresholding. With the greatest accuracy, i.e., 95.6%. this approach was applied
to minimize financial losses and waste. The expectation-maximization (EM) that depended on the
Gaussian mixture algorithm was applied for histogram fitting and the histogram type identification
for adaptive threshold computation.

Villon et al. [208] developed a new method to count and identify the types of coral reef fish in
underwater videos and images by applying a CNN. This method was trained and its quality and
performance were tested on several photographic databases with different post-processing decision
rules to identify 20 types of fish. This method effectively and accurately detected either the whole or
partial body of the fish.

Cui et al. [209] presented a new method for fish detection that uses a CNN with three optimization
algorithms to increase the learning samples number and simplify it. The training process was made
more efficient by accelerating it. Loss and training time were decreased by applying the dropout
method and refining the loss function. The improvement in accuracy and the decrease in processing
time showed the potential for the AUV implementation method.
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10.3. Corrosion Estimation of Subsea Pipelines

Khan et al. [210] presented a new and effective method for estimating underwater pipeline
corrosion through color information. First, underwater image enhancement and restoration were
developed to improve degraded images. The offshore oil and gas industry has severe pipeline corrosion
problems. which causes leaks and cracks. It was very difficult for human divers to follow the pipeline
because of unfavorable conditions. In this work, corrosion estimation depended on wavelet transform
was used to restore and enhance the underwater images.

10.4. Coral-reef Monitoring

Underwater digital imaging has improved data collection for monitoring benthic communities,
but analysis of these underwater images remains difficult. A new and effective method by [211] was
based on a deep learning CNN to analyze underwater images. This method used a global coral reef
monitoring dataset and artificial intelligence for simulation, data processing, and decision-making.
Several layers of the CNN were used for learning through feature extraction. Probabilistic inference
was used to interpret the output to the network. The experimental accuracy of this method was 97%.

10.5. Sea Cucumber Image Enhancement

The products of sea cucumber are very rich in low-fat, high-quality protein, and vitamins. Such
products contribute significantly to meeting people’s dietary needs since they depend on animal
protein for nutrition. Li et al. [212] developed an effective and novel method for enhancing blurred,
degraded, and color distorted underwater images. This method depended on the fusion of the prior
dark channel and retinex. First, preprocessing that depended on the prior dark channel was used. Then,
the Gaussian template and the underwater images were convolved to produce improved underwater
images. Finally, the brightness and saturation were enhanced in the HSV color space.

Qiao et al. [213] developed the technique for the automatic segmentation of sea cucumber images
taken underwater. First contrast enhancement was applied through the fusion of the CLAHE algorithm
and the RGB color model. Then, rectangular edges and the sea cucumber edges were extracted and
distinguished using active contour segmentation.

10.6. Other applications

Fatan et al. [214] developed a new method for tracking and detecting cables using an autonomous
underwater vehicle. First, the edges of the underwater images were computed. Then, they were
categorized based on the texture information using a support vector machine (SVM) and a multilayer
perceptron (MLP) neural network. Subsequently, only the edges applied for the next processes
remained. Finally, for tracking and detecting the cables, the filtered edges were processed using the
Hough transform.

Zhou et al. [215] developed a method for detecting motion in underwater videos that is critical
for different computer vision applications such as target tracking and recognition. This method
depends on the enhancement of underwater images. It enhances the clarity and the target contrast
through adaptive underwater color imaging algorithms and then extracts moving objects through the
background model.

11. Future Directions

Underwater image analysis is expected to be an active research topic in various disciplines, as
computer vision, pattern recognition, and machine learning, owing to its extensive and complex
functional applications. Despite several effective and good studies and many trials, several promising
research directions can still be suggested. The performance in many domains remains low compared
with that of other underwater image restoration and enhancement techniques, causing problems such
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as deblurring, super-resolution, and dehazing. In the following paragraphs, some of the potential
future directions are discussed.

• Efforts should be directed into noise removal as some research experiments cause high noise in
underwater videos and images.

• Studies should be dedicated to real-time object tracking and detection from enhanced underwater
images.

• Reducing the high computational cost and execution time required for restoring and enhancing
underwater images.

• The performance of the enhancement methods of contrast is still poor in many aspects. Therefore,
increasing the contrast in underwater images and videos is critical research that has attracted
considerable attention in recent years.

• Underwater image datasets are primarily used for model testing rather than training. Although
there are many underwater image datasets, a limited number of them contain a finite number of
underwater images. Therefore, a more compact dataset that can enhance underwater images is
needed.

• Evaluation metrics must be developed to consider more features in underwater videos and
images, such as texture, noise, and depth estimation.

• Lightweight instruments and tools must be constructed to capture and take underwater images
in challenging conditions.

• The computational efficiency and robustness of underwater imaging methods must be improved.
The desired methods must be adaptable to diverse underwater conditions and effective strategies
for different types of underwater applications should be developed. For recovering realistic
scenes, the fusion of restoration and enhancement techniques improves the computational
efficiency of underwater imaging. However, it is time-consuming to compute the two main
parameters. Conversely, IFM-free methods can improve image quality by redistributing the pixel
values and produce optimal color distributions.

• Several deep learning techniques, such as GAN to create the white balance and RNN to increase
detail and decrease noise, should be used for underwater image enhancement. Learning-based
underwater image enhancement methods depend heavily on datasets. These datasets require
multiple numbers of paired and referenced images. Therefore, compiling a public benchmark
dataset of various enhanced and hazed underwater images is essential.

• In the future, high-level tasks such as target detection through visibility degradation will be
applied to evaluate underwater image enhancement methods. Current methods for underwater
imaging focus on enhancing the perceptual effects but ignore whether enhanced imaging
increases the accuracy and quality of analysis of high-level features for classification and detection.
Therefore, the relationships between low-level underwater image enhancement and high-level
classification and detection should be advanced.

• The methods for the enhancement of deep-sea underwater images differ from those used for
shallow-water environments. The natural light propagated underwater is absorbed below
1000 meters; therefore, only artificial light sources strongly affect the images. The existing
underwater image restoration and enhancement methods cannot recover deep sea underwater
images. Therefore, to improve image quality and reduce halo effects, a new and effective imaging
model for deep-sea imaging is required to resolve uneven illumination, light attenuation, scatter
interference, and low brightness.

Conclusion

This paper discusses an extensive survey of underwater image enhancement and restoration
studies. The background of the underwater environment is presented. The latest categories
and classifications of underwater image enhancement/restoration techniques are presented and
elucidated. The limitations faced in this environment are listed. Existing underwater datasets are
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classified, discussed, and compared in terms of various aspects. Evaluation metrics are presented and
described. Underwater images from the UIEB dataset are experimentally evaluated for the qualitative,
quantitative, and computational time assessment of different enhancement and restoration techniques.
Recent and essential applications for underwater image enhancement and restoration are described.
Although many underwater image restoration and enhancement techniques are available, none can be
used to improve underwater images captured in various environments at different depths. Moreover,
the computational complexity of these techniques should be reduced. Thus, several approaches that
should be investigated in future research are highlighted.
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