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Abstract

Background: Computational compound repositioning has the potential for identifying new uses for existing drugs,
and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics.
However, even with these advances, the number of compounds successfully repositioned via computational
screening remains low. New strategies for algorithm evaluation that more accurately reflect the repositioning
potential of a compound could provide a better target for future optimizations.

Results: Using a text-mined database, we applied a previously described network-based computational
repositioning algorithm, yielding strong results via cross-validation, averaging 0.95 AUROC on test-set indications.
However, to better approximate a real-world scenario, we built a time-resolved evaluation framework. At various
time points, we built networks corresponding to prior knowledge for use as a training set, and then predicted on a
test set comprised of indications that were subsequently described. This framework showed a marked reduction in
performance, peaking in performance metrics with the 1985 network at an AUROC of .797. Examining performance
reductions due to removal of specific types of relationships highlighted the importance of drug-drug and disease-
disease similarity metrics. Using data from future timepoints, we demonstrate that further acquisition of these kinds
of data may help improve computational results.

Conclusions: Evaluating a repositioning algorithm using indications unknown to input network better tunes its
ability to find emerging drug indications, rather than finding those which have been randomly withheld. Focusing
efforts on improving algorithmic performance in a time-resolved paradigm may further improve computational
repositioning predictions.

Keywords: Heterogeneous network, Semantic Medline database, Semantic network, Unified medical language
system, Drug central, Compound repositioning, Machine learning

Background
Compound repositioning is the identification and develop-
ment of new uses for previously existing drugs. Reposi-
tioning is an attractive pipeline for drug development
primarily due to the reduced pharmaceutical uncertainty
and development times when compared to traditional pipe-
lines [1]. While clinical observation and improved under-
standing of the mechanism of action are the two primary
means by which a drug is repositioned, computational re-
positioning provides a third route to identifying these

candidates. This third method has seen much development
in the past decade as a way to potentially speed up the drug
discovery process. The ultimate goal of computational re-
positioning is to quickly produce a small number of clinic-
ally relevant hits for further investigation. This process is
achieved through the identification of features that relate
drugs to diseases and utilizes a gold standard of known true
drug-treats-disease relationships to train an algorithm to
categorize or rank potential drug-disease pairs for treat-
ment probability. While this path can efficiently produce
repositioning probabilities for countless drug-disease pairs,
identifying and experimentally validating the results of clin-
ical importance can be both costly and challenging [2].
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In the last decade, there have been many improvements
in approaches and algorithms to identify these candidates
[3]. These include an expansion from gene expression-
based approaches [4, 5] to include methods based on know-
ledge graphs [6, 7]. Coupled with the advancements in
machine learning, the number of different methods for pro-
ducing repurposing predictions has quickly increased, each
showing marked improvements on their ability to accur-
ately predict candidates. One common result in these
knowledge-based approaches is that drug-drug and disease-
disease similarity, when combined with drug-disease associ-
ations, provide the important information for generating a
learning model [6, 8, 9]. Many different metrics can be used
to express these similarities, like structural motifs in the
case of drugs, or phenotypes in the case of diseases. How-
ever, as good as these algorithms have become at providing
repurposing candidates from a list of known indications,
the majority of computational repositioning projects do not
continue beyond the in vitro studies [10].
One recent effort in computational repositioning,

Himmelstein et al.’s Rephetio project [11] used a hetero-
geneous network (hetnet) to describe drug-disease rela-
tionships in a variety of ways. A hetnet is a network
where nodes and edges of more than one type, allowing
for multiple edges between any two nodes, each with dif-
ferent semantic meaning. For example, in a simple het-
net with three node types (or metanodes) of Drug, Gene
and Disease hetnet, one relationship or metaedge may
be a Drug - Inhibits - Gene edge, while another may be
a Drug - Activates - Gene Edge. This Rephetio study
compiled several different highly curated data sources to
generate a hetnet of 11 metanodes and 24 metaedges
and produced repositioning predictions by extracting
counts of various metapaths between drug-disease pairs,
where a metapath is defined by the concept and relation-
ship types in the knowledge graph that join the drug and
disease. These metapaths counts were then used as nu-
merical features in a machine learning model, achieving
excellent performance results. Whether this learning
model that utilizes network structure as features can
achieve similar results with a less well-curated network
remains an open question.
Progress in the field of natural language processing (NLP)

has led to the ability to generate large biomedical know-
ledge bases through computational text-mining [12, 13].
This method can produce large amounts of data rather
quickly, which when coupled with semantic typing of con-
cepts and relations, produces a massive datasource that can
quickly be represented in a hetnet structure.
In this work, we evaluated the utility of text-mined net-

works for use in computational compound repositioning,
by utilizing the Semantic MEDLINE Database (Sem-
MedDB) [14] as an NLP-derived knowledge network, and
the Rephetio algorithm for producing predictions. We

evaluated the performance of this data source when
trained with a gold standard of indications taken from
DrugCentral [15] and tested via cross-validation. We then
propose a new framework for evaluating repurposing algo-
rithms in a time-dependent manner. By utilizing one of
the unique features of SemMedDB, a PubMed Identifica-
tion number (PMID) documented for every edge in the
network, multiple networks were produced in a time-
resolved fashion, each with data originating on or before a
certain date, representing the current state of knowledge
at that date. These networks were then evaluated in the
context of computational repositioning via training on in-
dications known during the time period of the given net-
work and tested on indications approved after the
network, a paradigm that more closely resembles the real-
world problem addressed by computational repositioning
than a cross-validation. Finally, we analyzed these results
to identify the types of data most important to producing
accurate predictions and tested the predictive utility of
supplementing a past network with future knowledge of
these important types.

Methods
Initial SemMedDB network generation
The SemMedDB SQL dump Version 31R, processed
through June 30, 2018, was downloaded (https://skr3.
nlm.nih.gov/SemMedDB/download/download.html) and
converted into a csv. Using Python scripts (https://
github.com/mmayers12/semmed/tree/master/prepare),
corrupted lines were removed, and lines were normal-
ized to a single subject-predicate-object triple per line.
Identifiers in this ‘clean’ database were retained in their
original Unified Medical Language System (UMLS)
space, using the UMLS Concept Unique Identifier (CUI)
as the primary ID. This ‘clean’ database was then further
processed into a heterogeneous network (hetnet) com-
patible with the hetnet package, hetio (https://github.
com/hetio/hetio) a prerequisite for the rephetio machine
learning pipeline [16].
The high computational complexity of feature extrac-

tion for this algorithm and non-linear relationship be-
tween feature number and unique metaedges necessitated
additional processing to reduce complexity. This process-
ing included: using the UMLS Metathesaurus version
2018AA to map terms to other identifier spaces (primarily
Medical Subject Headings or MeSH), as MeSH terms tend
to be more general than their other counterparts, this
mapping functioned to combine granular concepts into
more general terms, thus reducing node-count and data-
redundancy; combining semantic (edge) types of similar
meaning (e.g. between Chemicals & Drugs and Disorders,
‘TREATS’, ‘PREVENTS’, ‘DISRUPTS’, and ‘INHIBITS’
were merged to ‘TREATS’. The full mapping is available
here: https://github.com/mmayers12/semmed/blob/
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master/data/edge_condense_map.csv); filtering out se-
mantic edge types that were sparsely populated (less than
0.1% of the total network); removing the top 100 nodes by
degree to eliminate extremely general concepts (e.g., Pa-
tients, Cells, Disease, Humans); filtering out edges with
less than 2 supporting PMIDs to reduce data noise due to
text-mining.
To create time-resolved knowledge networks, a map be-

tween PMID and publication year was generated. The pri-
mary source for this map was NLM - Baseline Repository
(ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/), however
this was not exhaustive list of PMIDs contained in Sem-
MedDB, so three other data sources were used to create
as complete a map as possible: Pubmed Central (ftp://ftp.
ncbi.nlm.nih.gov/pub/pmc/), Euro PMC (http://eur-
opepmc.org/ftp/pmclitemetadata/), and EBI’s API (https://
europepmc.org/RestfulWebService). Networks were gen-
erated at 5-year intervals starting at the year 1950 continu-
ing to present day. The PMID with the earliest publication
year for a given edge was used for that edge.

Gold standard generation
The PostgreSQL dump of DrugCentral dated 2018-
06-21 was downloaded for use as the gold standard
of known drug-disease indications. The following ta-
bles were extracted for use throughout the analysis
pipeline: omap_relationship, containing the indica-
tions; identifier, with maps from internal IDs to other
systems including UMLS and MeSH; approval, con-
taining approval dates from worldwide medical agen-
cies; synonyms, containing drug names. Both
DrugCentral’s and UMLS’s cross-references to MeSH
were used to map DrugCentral internal structure IDs
to SemMedDB, ensuring maximum overlap. Disease
concepts contained both MeSH and Systematized No-
menclature of Medicine (SNOMED) identifiers that
could be mapped to SemMedDB via UMLS cross-
references. Some diseases could not be mapped to
UMLS, primarily due to the specific nature of the
condition, and were discarded. Unmappable condi-
tions included ‘Uremic Bleeding Tendency’, ‘Tonic-
Clonic Epilepsy Treatment Adjunct’, and ‘Prevention
of Stress Ulcer.’ To further merge highly related dis-
eases beyond the mapping UMLS terms to MeSH,
diseases were mapped up the Disease Ontology hier-
archy to published slim subsets (https://github.com/
DiseaseOntology/HumanDiseaseOntology/tree/master/
src/ontology/subsets)(https://github.com/dhimmel/dis-
ease-ontology) resulting in a more general disease
concept for each treated disease. For example, ‘Vaso-
motor rhinitis,’ ‘Allergic rhinitis’, ‘Perennial allergic
rhinitis’, and ‘Seasonal allergic rhinitis,’ were merged
through these steps into the single concept ‘Allergic
rhinitis.’ For time-resolved analysis, the first approval

year for a drug in an indication, provided by Drug-
Central, was taken as a proxy for the date of the
indication.

Repurposing algorithm
A customized version of the PathPredict algorithm [17] uti-
lized in the Repehtio repurposing project [11] was adapted
for producing repurposing predictions on the SemMedDB
hetnet. This algorithm utilizes Degree Weighted Path
Counts (DWPC) as the primary feature for machine learn-
ing [16]. These features are based on the various metapaths
that connect the source and target node types (in this case
Chemicals & Drugs, and Disorders). To aid in the speed of
feature extraction, we built a framework (https://github.
com/mmayers12/hetnet_ml) based on multiplication of
Degree-Weighted adjacency matrices to extract path-
counts quickly. The extracted features were then scaled and
standardized according to the Rephetio framework. Finally,
an ElasticNet regularized logistic regression was performed
using the python wrapper (https://github.com/civisanaly-
tics/python-glmnet) for the Fortran library used in the R
package glmnet [18]. Two hyperparameters were tuned via
grid search, the ElasticNet mixing parameter (α) and the
DWPC damping exponent (w) and once chosen left con-
stant throughout all future runs.
To evaluate the model, the DrugCentral gold standard

was partitioned by indication into 5 equal partitions. One-
fifth of the indications were withheld during training, and
negative training examples were sampled at a rate of ten
times the number of positives from the set of non-positive
drug-disease pairs. The corresponding TREATS edges for
holdout indications were removed from the hetnet before
feature extraction in an attempt to limit the model’s ability
to learn directly from those edges. The five-fold cross-
validations were performed a total of ten times, each with
a different random partitioning.

Time-restricted learning models
The models for the time-resolved networks were trained
using the positive gold-standard indications where drug
was approved in the years prior to and including the year
of the network. Negatives were selected randomly from
the pool of non-positive drug-disease pairs at a ratio of 10:
1 of the total number of positives, prior and future. Nega-
tives were then split 80:20 into training and validation sets.
After training, the models were then tested on a combin-
ation of the positive indications dated after the year of the
network and the 20% of the selected negatives. Breakdown
of the number of positive and negative examples in each
split is detailed in Additional file 1: Table S1.
To combine the results of all of the models across the

all network years, the prediction probability for each
model was first converted to z-score. This allowed for a
cross model comparison of the results. The standardized
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probabilities for gold-standard drug-disease indications
were then grouped according to the difference in years
between the network version and the approval year of
the drug in the indication. This grouping allowed for the
generation of performance metrics for a relative drug ap-
proval year. Negative examples were again randomly se-
lected at a ratio of 10:1, across all models. Area under
the receiver operator characteristic (AUROC) and preci-
sion recall curves (AUPRC) were then calculated for
each of the time differences from negative 20 to positive
20 years.

Feature performance analyses
To test the relative importance of each edge type to the
model, one of the better performing networks on future
indications, 1985, was chosen as a baseline. We per-
formed a ‘dropout’ analysis in which edge instances were
removed randomly from the network at rates of 25, 50,
75, and 100% before running the machine learning pipe-
line. Randomly dropping a fraction of the edges may re-
sult in edges more informative to the model may be
removed, while other less-import remain, or vise-versa.
To account for this, five replicates were run at each of
the dropout rates, with random seeds used to select the
edges to drop. Performance metrics AUROC and
AUPRC of these different dropout results were then
compared to the baseline 1985 network model result.
For the edge replacement analysis, the 1985 network

was taken as a baseline. Edge instances of a given type
were, type by type, replaced with those from the net-
works of other years starting with 1950 and continuing
to present. This produced 15 models for each of the 30
edge types, one for each network year per edge type. For
example, for the TREATS edge, all values from the 1985
network were removed and replaced with TREATS
edges from the 1950 network and predictions were
made, then the TREATS edges were replaced with those
from the 1955 network, and so-forth. AUROC and
AUPRC results from these modified networks were com-
pared to that of the base 1985 network.

Results
5-fold cross-validation on text-mined data
A hetnet comprised of biomedical knowledge was built
from SemMedDB, a database containing subject, predi-
cate, object triples that were text-mined from PubMed
abstracts. The initial SemMedDB data dump contained
21,416,739 unique subject predicate object triples (graph
edges) and 263,692 unique concepts (nodes). After data
processing steps (see methods) the final network con-
tained 78,400 nodes and 2,470,050 edges. These con-
cepts were classified into 6 different types derived from
the UMLS semantic groups – ‘Chemicals & Drugs’, ‘Dis-
orders’, ‘Genes & Molecular Sequences’, ‘Anatomy’,

‘Physiology’, and ‘Phenomena’. The relationships be-
tween the nodes were also classified as one of 30 differ-
ent edge types, comprised of both a semantic relation
and the source and target node types. For example, the
relation ‘AFFECTS’ between nodes of type ‘Chemicals &
Drugs’ and ‘Anatomy’ is distinct from the relationship
‘AFFECTS’ between nodes of type ‘Chemicals & Drugs’
and ‘Physiology’. In labeling these relations, the node ab-
breviations are appended to the semantic relation to ex-
plicitly differentiate the edge types, e.g. the above
examples the labels are ‘AFFECTS_CDafA’ and ‘AF-
FECTS_CDafPH’ respectively (Table 1, and Fig. 1). To
train a learning model for compound repurposing, a gold
standard of high quality and reliability containing drug-
disease indications is required. We used the open source
drug database, DrugCentral, as the source for our gold
standard, as this database contains a relatively complete,
curated list of known indications, with a total of 10,938
unique drug-disease pairs. In mapping these drug and
disease concepts to those found in SemMedDB, 2489 in-
dications were lost due a lack of any identifier in Drug-
Central (see methods for examples). Another 1396 lost
due to an inability to map either the drug or the disease
to a UMLS concept found in SemMedDB. Further re-
ductions came due to the merging of highly related dis-
ease concepts, resulting in 5337 unique indications that
could be used as true-positives for training and testing
purposes.
After preparation of the hetnet and the gold standard,

the utility of this text-mined knowledge base for the pre-
diction of novel drug-disease indications was examined
using a modified version of the PathPredict algorithm,
utilized by Himmelstein et al. in the Rephetio drug re-
purposing project [11]. This paradigm utilizes meta-
paths, or the ways that the node types (e.g. Gene &
Molecular Sequences) and edge types (e.g. INTER-
ACTS_WITH) combine to produce a path from Drug to
Disease, as the primary features for machine learning.
Counts of each metapath between Drug and Disease,
then are weighted by the degree of the nodes within
each path, producing the degree weighted path count
(DWPC) metric as the primary features for training the
classifier [16]. The remaining features, while compara-
tively small, are derived from the simple degree values of
each edge type for the drug node and the disease node
in given drug-disease pair. The models produced during
5-fold cross validation showed excellent results, with an
average area under the receiver operator characteristic
(AUROC) of 0.95 and average precision (AUPRC) of
0.74 (Fig. 2a and b). These results are consistent with a
very accurate classifier, and comparable to results seen
in similar computational repositioning studies [6, 9, 11].
To further evaluate the accuracy of these predictions,
the prediction rankings of validation set indications were
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examined for given drugs and diseases (Fig. 2c and d).
The median value for the rank of a positive disease,
given a test-set positive drug was 18 out of 740 total dis-
eases. Similarly, when examining the test-set positive
diseases, the median rank for a positive drug was 32 out
of a possible 1330 examined compounds.
The ElasticNet logistic regression in this analysis used

feature selection to reduce the risk of overfitting with a
highly complex model. In comparing the models, there

was a fairly consistent selection of short metapaths with
only two edges that include important drug-drug or
disease-disease similarity measures (Fig. 2e). These include
two related drugs, one of which treats a disease (dwpc_
CDrtCDtDO), or two associated diseases, one of which
has a known drug treatment (dwpc_CDtDOawDO). How-
ever, other metapaths of length 3 which encapsulated
drug-drug or disease-disease similarities were also highly
ranked. This includes two drugs that co-localize to a given

Table 1 Top 10 Edge Types by Instance Number

Subject Node Type Predicate Object Node Type Edge Abbreviation Count

Anatomy LOCATION_OF Chemicals & Drugs AloCD 380,422

Chemicals & Drugs REGULATES Chemicals & Drugs CDreg>CD 214,912

Chemicals & Drugs INTERACTS_WITH Genes & Molecular Sequences CDiwG 183,016

Anatomy LOCATION_OF Disorders AloDO 182,373

Anatomy LOCATION_OF Genes & Molecular Sequences AloG 174,246

Chemicals & Drugs TREATS Disorders CDtDO 172,384

Disorders ASSOCIATED_WITH Disorders DOawDO 169,075

Anatomy LOCATION_OF Anatomy AloA 98,472

Chemicals & Drugs STIMULATES Genes & Molecular Sequences CDstG 93,343

Chemicals & Drugs AFFECTS Anatomy CDafA 92,126

Fig. 1 The metagraph SemMedDB hetnet data model. This graph details the 6 node types and 30 edge types present in this network
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anatomical structure (dwpc_CDloAloCDtDO), two dis-
eases that present in the same anatomical structure
(dwpc_CDtDOloAloDO), or diseases that affect similar
phenomena (dwpc_CDtDOafPHafDO). In this case ana-
tomical structures could include body regions, organs, cell
types or components, or tissues, while phenomena include
biological functions, processes, or environmental effects. It
is important to again note that these ‘similarity measures’
are purely derived from text-mined relations.

While these results indicate a fairly accurate classifier in
this synthetic setting, the paradigm under which they are
trained and tested is not necessarily optimal for finding
novel drug-disease indications. A cross-validation frame-
work essentially optimizes finding a subset of indication
data that has been randomly removed from a training set.
However, prediction accuracy on randomly removed indi-
cations does not necessarily extrapolate to prospective
prediction of new drug repurposing candidates. Framing

Fig. 2 5-fold cross validation results for SemMedDB network using DrugCentral gold standard. a) Receiver-Operator Characteristic curve displaying the
mean result across 5-folds. Ten different seed values for randomly splitting indications in 5 are compared showing very little variation. b) Precision-
Recall curve for the mean result across 5-folds, with ten different split seeds displayed. c) Histogram of log2 transformed rank of true positive disease
for a given test-set positive drug, taken from a representative fold and seed of the cross-validation. If a drug treats multiple diseases, the ranks of all
diseases treated in the test-set indications are shown. d) Histogram of log2 transformed rank of true positive drug for a given test-set disease, chosen
from same fold and seed as C. If a disease is treated by multiple drugs in the test-set indications, all ranks are included. e) (left) Boxplot of 10 largest
model coefficients in selected features across all folds and seeds. (right) Breakdown of metapath abbreviations. Node abbreviations appear in capital
letters while edge abbreviations appear lower case
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the evaluation framework instead as one of future predic-
tion based on past examples may be more informative.
For example, the question ‘given today’s state of biomed-
ical knowledge, can future indications be predicted?’ may
more closely reflect the problem being addressed in drug
repositioning. The best way to address this question would
be to perform the predictions in a time-resolved fashion,
training on contemporary data and then evaluating the
model’s performance on an indication set from the future.

Building time-resolved networks
To facilitate a time-resolved analysis, both the knowledge
base data and the training data need to be mapped to a
particular time point. Each triple in SemMedDB is anno-
tated with a PMID, indicating source abstract of this text-
mined data. Using the PMID, each triple, corresponding
to an edge in the final network, can be mapped to a spe-
cific date of publication. The DrugCentral database also
includes approval dates from several international medical
agencies for the majority of the drugs. By filtering the
edges in the network by date, an approximate map of the
biomedical knowledge of a given time period can be pro-
duced. Therefore, we generated multiple networks, each
representing distinct time-points. We then applied the
machine learning pipeline to each of these networks to
evaluate the expected performance on future drug-disease
indications. Combining these sources of time-points for
the network serves to replicate the paradigm of training a
machine learning model on the current state of biomed-
ical knowledge, evaluating its ability to predict what indi-
cations are likely to be found useful in the future.
Knowledge networks were built in a time-resolved

fashion for each year, starting with 1950 and continuing
until the present. This was accomplished by removing
edges with their earliest supporting PMID dated after
the desired year of the network. If either a drug or a dis-
ease from a known gold standard indication was no lon-
ger connected to any other concept in the network, the
indication was also removed from the training and test-
ing set for that network year. For example, olprinone, a
cardiac stimulant for approved for acute cardiac failure
in 1996, was first described in literature in 1989, as
stated in SemMedDB. This description was represented
hetnet by the edge: olprinone - AUGMENTS_CDagPS -
Myocardial Contraction. Because olprinone does not
show up in networks before 1989, it is not available for
selection in training or validation sets in these network
years. Examining the trends of the networks constructed
for the various timepoints, the number of nodes and
edges always increased, but edges increased more
quickly with later timepoints producing a more con-
nected network than earlier (Fig. 3a and b).
The number of indications that could be mapped to a

given network year increased quickly at first but rose

much more slowly in the later years of the network, even
though the total number of concepts in the network
continued to increase. For the majority of the years of the
network, the split between current and future indications
remained at a ratio of around 80% current and 20%, ideal
for a training and testing split. However, after the year
2000, the number of mappable future indications contin-
ued to diminish year after year, reducing the validation set
size for these years (Additional file 1: Fig. S1).

Machine learning results
The performance of each model against a validation set of
future indications steadily increased from the earliest
time-point until the 1987 network. The AUROC metric
saw continual increases over the entirety of the network
years, though these increases occurred more slowly after
the 1987 network (Fig. 4a). Looking at average precision,
this metric peaked at the 1987 timepoint with a value of
0.492, and then fell sharply at 2000 and beyond, likely due
to the diminished number of test-set positives. The
AUROC of this peak average precision time point of 1985
was 0.822. These peak performance metrics fall far below
those found via 5-fold cross-validation indicating an inher-
ent limitation in evaluating models via this paradigm.
Similar to the cross-validation results, the models favored

metapaths that represented drug-drug and disease-disease
similarity (Fig. 4b). Specifically, the metapaths of type
‘Chemical & Drug - TREATS - Disorder - ASSOCIATED
WITH - Disorder’ (dwpc_CDtDOawDO) and ‘Chemical &
Drug - RELATED_TO - Chemical & Drug - TREATS -
Disorder’ (dwpc_CDrtCDtDO) had the highest weights
across almost all models. One difference found from the
cross-validation results is the appearance of the `Physi-
ology` metanode in two of the top selected metapaths, one
connecting two diseases through common physiology, and
one connecting two drugs that both augment a particular
physiology. Model complexity was also diminished com-
pared to those seen in during cross-validation, with the ma-
jority of models selecting less than 400 features, or 20% of
the total available (Additional file 1: Fig. S2).
Finally, one question to explore is whether or not

there is a temporal dependence on the ability to predict
indications. For example, is there better performance on
drugs approved 5 years into the future rather than 20,
since one only 5 years pre-approval may already be in
the pipeline with some important associations already
known in the literature. Looking at selected examples
(Fig. 4c), there appeared to be an increase in probability
of treatment, as assigned by the Logistic Regression
model, before the Drug’s initial approval year. Asparagi-
nase is a treatment for Acute lymphoid leukemia ap-
proved by the FDA in 1994. Examining the probability
of treatment over time shows very low probability in the
early models. However, the probability rises from 1970
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to 1980, reaching above 90% by 1981, thirteen years be-
fore the drug was approved. This increase in probability
before a drugs approval does not hold for all indications.
Cysteine, an amino acid that, according to DrugCentral,
is used to treat Bronchiectasis. However, this Drug-
Disease pair saw no increase in probability of treatment,
even after its approval year in 1986, when this indication
became a part of the training set. This is likely due to
the fact, since cystine is a ubiquitous compound in bio-
medical literature, the degree of each edge is 2–3 orders
of magnitude greater than the average compound for a
given edge type. This results in the algorithm treating
Cysteine as a hub node, and severely down weighting all
DWPC metrics associated with this node, essentially
producing a null vector.
To identify whether or not these observations held as

a general trend, the results from all network years were
combined via z-scores. Grouping indications by approval
relative to the year of the network allowed for an
AUROC metric to be determined for different time-
points into the future (Fig. 4d). This analysis revealed
that there is still a substantial predictive ability for drugs
approved up to about 5 years into the future. However,
after 5 years, this value quickly drops to a baseline of .70
for the AUROC and .15 for the average precision. These
results indicate a temporal dependence on the ability to
predict future indications, with the model being fairly in-
accurate when looking far into the future.

Edge dropout confirms importance of drug disease links
Many other efforts in computational repositioning have
found that emphasis on drug-drug and disease-disease
similarity metrics results in accurate predictors [6, 19, 20].
To further investigate the types of information most im-
pactful in improving the final model, an edge dropout

analysis was run. The 1985 network was chosen as a base
network for this analysis both due to its relatively strong
performance on future indications and its centralized time
point among all the available networks. By taking each
edge type, randomly dropping out edge instances at rates
of 25, 50, 75 and 100%, and comparing the resulting
models, the relative importance of each edge type within
the model could be determined. The edge that was found
to have the largest impact on the resulting model was the
‘Chemicals & Drugs - TREATS - Disorders’ edge, reducing
the AUROC by .098 (Fig. 5a). This result reinforces the
idea that drug-disease links, particularly those with a
positive treatment association, are highly predictive in re-
positioning studies. The drug-drug (‘Chemicals & Drugs -
RELATED_TO - Chemicals & Drugs’) and disease-disease
(‘Disorders - ASSOCIATED_WITH - Disorders’) similar-
ity edges were the next two most impactful edges on the
overall model, both showing decreases of .015 in the
AUROC when completely removed. Overall, however
most edges showed very little reduction in AUROC, even
at 100% dropout rate. This could indicate a redundancy in
important connections between drugs and diseases that
the model can continue to learn on even when partially
removed.

Time-resolved edge substitution confirms edge
importance
While dropout identifies the most important associations
between concepts to this predictive model, this does not
necessarily confirm that more data of these types will im-
prove the model’s results. To simulate this the impact of
the assimilation of new knowledge of a specific type, an
edge replacement analysis was performed on the 1985 net-
work. This process allowed for the examination of how ac-
cumulating new real-world data of a given type might

Fig. 3 Time-resolved network build results. a) Number of nodes of a given type by network year. b) Average node degree for each node type
across all network years
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affect the model. By taking a specific edge type and re-
placing all the edges of that type with those from the other
network years from 1950 to 2015, the potential effect of
gathering more data of these specific types over time
could be examined. Similar to the dropout analysis, the
target edge of ‘Chemicals & Drugs - TREATS - Disorders’
had the greatest effect on the model’s performance,

showing an increase of .108 when replaced with the most
current version of the edge (Fig. 5b). Similarly, the
AUROC showed a large loss of .081 when replaced with
values from 1950. The drug-drug and disease-disease
similarity edges also showed significant performance in-
creases when replaced with contemporary values, while
decreasing performance in performance when replaced

Fig. 4 Machine learning results for the time-resolved networks. a) Performance metrics for the test-set (future) indications across the different network
years. Only drugs approved after the year of the network are included in the test-set, while those approved prior are used for training. b) Box plots of
the values of the model coefficients across all of the different network years. The top-10 coefficients with largest mean value across all models are
shown. c) Probabilities of treatment of selected indications for each network model containing both the Drug and Disease concepts. Arrows indicate
the year that the drug was first approved for any indication. Points left of the arrow on the graph, the indication was used as part of the validation set,
and those to the right, the training set. d) AUROC and AUPRC data for indications based on their probabilities, split by the number of years between
drug approval date and the year of the network. Values to the left of the Zero Point are indications approved before the network year thus part of the
training-set, while those to the right are part of the test-set. Probabilities for all drug-disease pairs were standardized before combining across models.
Points are given for each data point, while lines represent a 5-year rolling average of metrics
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with 1950 values. While the three edges that produced the
greatest decrease in performance during the dropout ana-
lysis also had the biggest benefit when adding future
edges, not all behaved in this manner. For example, the
edge ‘Anatomy - LOCATION_OF - Chemicals & Drugs’
showed the fourth largest decreases in performance dur-
ing edge dropout analysis. When using past versions of
this edge type with the 1985 network, the performance
did have a measurable decrease in AUROC of .012, how-
ever current versions of this edge type only improved the
score by .002. Conversely, the edge ‘Physiology - AF-
FECTS - Disorders’ showed little to no performance loss
during the dropout analysis and indeed showed little per-
formance change when using past versions of the edge
(Additional file 1: Fig. S3). However, this edge showed
substantial increase of .012 AUROC when using contem-
porary versions of the edge. Finally, some edge types like

‘Genes & Molecular Sequences - ASSOCIATED WITH -
Disorders’ actually performed slightly better with past ver-
sion or future versions of the edge, when compared 1985
version of the edge, with an increase in AUROC of .004
with contemporary edges and an increase of .011 with
edges from 1950 (Additional file 1: Fig. S4). This further
underscores the idea that a time-resolved analysis provides
a more complete picture of the important components to
a learning model.

Discussion
While a text-mined data source, SemMedDB performed
very well when using the metapath-based repositioning
algorithm from Rephetio and trained and tested against
a DrugCentral derived gold standard. However, perform-
ing well in a cross-validation does not necessarily lead to
a large number of real-world repositioning candidates.

Fig. 5 Analysis of edge type importance to the overall model. a) Edge dropout analysis showing the reduction in AUROC metric when the edges
are dropped out at rates of 25, 50, 75, and 100%. Error bars indicate 95% confidence interval over 5 replicates with different seeds for dropout.
The 9 edge types that had the greatest reduction from 0 to 100% dropout are displayed. b) Edge replacement analysis showing changes in
AUROC when edges are replaced with those of the same type from another year’s network. The top 9 edges that showed greatest loss in
performance in the dropout analysis between 0 and 100% dropout are displayed
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This evaluation paradigm essentially trains the learning
model to identify indications that are currently known
but simply withheld from a dataset. In the real world,
the problem solved by computational repositioning is
more closely aligned to attempting to predict new indi-
cations that are not already known at this current time-
point. Our use of time-resolved knowledge networks has
allowed us to replicate this paradigm and expose a
marked reduction in performance when a model is
tested in this fashion. The observed performance reduc-
tion combined with the high level of noise in the under-
lying data source, SemMedDB, contraindicate the utility
of performing further validation on the individual repur-
posing candidates identified in this work.
Time separation is a long-used practice to combat over-

fitting in data mining [21] and our application of this prac-
tice to compound repositioning may help explain some of
the discrepancy between model performance and the num-
ber of repositioning candidates successfully produced
through computational repositioning. We believe that this
method for evaluating a repositioning algorithm in a time-
resolved fashion may more accurately reflect its ability to
find true repurposing candidates. Identifying algorithms
that perform well at predicting future indications on the
time-resolved networks presented in this paper may yield
better results when translating retrospective computational
analyses to the prospective hypothesis generation. As these
networks are built around text-mined data, predictive per-
formance may be enhanced by utilizing high-confidence,
curated, data sources for computational repositioning. The
original date of discovery for a given data point has shown
itself to be an important piece of metadata in evaluating a
predictive model. Ensuring curated data sources are sup-
ported by evidence that can be mapped back to an initial
date of discovery functions to enhance the utility of the data
in predictive models such as these. Finally, this temporal
analysis again supports the notion that drug and disease
similarity measures as well as direct associations between
these concepts are still the most important pieces of data in
generating a predictive model. Further enhancing our un-
derstanding of mechanistic relationships that these con-
cepts will likely result in further increases to computational
repositioning performance.

Conclusions
Time-resolved evaluation of compound repositioning al-
gorithms provides a better method for determining the
ability of an algorithm to find new drug indications than
cross-validation alone. Tuning computational reposi-
tioning algorithms for better performance in this time-
resolved framework could function to improve in silico
predictions, hopefully increasing the proportion of hits
to pass beyond the in vitro stage.
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