{% include icon.html icon="fa-solid fa-layer-group" %} Explainable Dynamic Ensemble Learning with Late Fusion of Multimodal Data for Intelligent **Decision Support**

Project Description

In domains like healthcare, finance, and cybersecurity, data often comes from multiple modalities images, sensors, clinical records, and text reports. However, this heterogeneity presents major challenges:

- Missing modalities
- · Imbalanced feature sets
- Prediction uncertainty

While dynamic ensemble selection (DES) offers a flexible way to choose the best models per instance, traditional systems mostly rely on **early fusion**, limiting their performance and explainability.

To overcome these limitations, InfoLab at Sungkyunkwan University (SKKU) has developed a novel explainable DES framework using late fusion. This project introduces new algorithms, validated applications, and an open-source Python library, Infodeslib, for real-world use.

Key Contributions

Infodeslib: Python Library for Dynamic Late Fusion

An open-source Python package that implements:

- 4 DCS and 7 DES techniques adapted for late fusion
- Modular assignment of classifiers to specific modalities
- Improved generalization and modal robustness

Built-in explainability tools include:

- Case-Based Reasoning (CBR): Highlights similar past cases
- Classifier Contribution Visuals: Shows how each model influenced the final decision
- Local Feature Importance (SHAP): Displays feature impact on predictions
- 2. Dynamic Late Fusion Framework with Clinical Validation

We extended traditional DES methods like KNORA-U to support late fusion using region-ofcompetence selection.

PROF

Evaluation Results:

- MIT-GOSSIS Dataset (6,600 hospital patients):
 Achieved 90.16% accuracy, outperforming early fusion and static ensembles
- Additional Benchmarks:
 ADNI, NACC, PPMI, Credit Card Clients, and Samarkand Neonatal ICU Dataset
- Demonstrated strong performance in handling missing data and enhancing diversity

Project Objectives

- Build an adaptive, late-fusion ensemble framework that dynamically selects models across modalities
- Integrate explainable AI tools to support transparent decision-making
- Test the framework across healthcare, financial, and critical system datasets
- Release a user-friendly, open-source library to foster adoption and reproducibility

Research Impact

This project pioneers a next-gen intelligent decision support system by uniting:

- Dynamic ensemble learning
- Multimodal late fusion
- · Embedded explainability

The result is a robust, interpretable solution for high-stakes AI applications. By releasing **Infodeslib**, InfoLab (SKKU) empowers researchers and practitioners to build trustworthy and high-performance systems across a range of multimodal data environments.